These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 25759819)
1. Endophytic Bacillus subtilis strain E1R-J is a promising biocontrol agent for wheat powdery mildew. Gao X; Gong Y; Huo Y; Han Q; Kang Z; Huang L Biomed Res Int; 2015; 2015():462645. PubMed ID: 25759819 [TBL] [Abstract][Full Text] [Related]
2. Induction of resistance in wheat by bacterial cyclic lipopeptides. Khong NG; Randoux B; Deravel J; Tisserant B; Tayeh Ch; Coutte F; Bourdon N; Jacques P; Reignault P Commun Agric Appl Biol Sci; 2013; 78(3):479-87. PubMed ID: 25151823 [TBL] [Abstract][Full Text] [Related]
3. Suppression of wheat TaCDK8/TaWIN1 interaction negatively affects germination of Blumeria graminis f.sp. tritici by interfering with very-long-chain aldehyde biosynthesis. Kong L; Chang C Plant Mol Biol; 2018 Jan; 96(1-2):165-178. PubMed ID: 29197938 [TBL] [Abstract][Full Text] [Related]
4. Control of stripe rust of wheat using indigenous endophytic bacteria at seedling and adult plant stage. Kiani T; Mehboob F; Hyder MZ; Zainy Z; Xu L; Huang L; Farrakh S Sci Rep; 2021 Jul; 11(1):14473. PubMed ID: 34262108 [TBL] [Abstract][Full Text] [Related]
5. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew. Fu Y; Zhang H; Mandal SN; Wang C; Chen C; Ji W J Proteomics; 2016 Jan; 130():108-19. PubMed ID: 26381202 [TBL] [Abstract][Full Text] [Related]
6. New Insights into the Life Cycle of the Wheat Powdery Mildew: Direct Observation of Ascosporic Infection in Blumeria graminis f. sp. tritici. Jankovics T; Komáromi J; Fábián A; Jäger K; Vida G; Kiss L Phytopathology; 2015 Jun; 105(6):797-804. PubMed ID: 25710203 [TBL] [Abstract][Full Text] [Related]
7. Identification of physiological races of Blumeria graminis f. sp. tritici and evaluation of powdery mildew resistance in wheat cultivars in Sistan province, Iran. Salari M; Okhovat SM; Sharifi-Tehrani A; Hedjaroude GA; Zad SJ; Mohammadi M Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):549-53. PubMed ID: 15151289 [TBL] [Abstract][Full Text] [Related]
8. Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi. Yoshida S; Koitabashi M; Nakamura J; Fukuoka T; Sakai H; Abe M; Kitamoto D; Kitamoto H J Appl Microbiol; 2015 Jul; 119(1):215-24. PubMed ID: 25898775 [TBL] [Abstract][Full Text] [Related]
9. Antagonistic Activity and Mechanism of Yi YJ; Yin YN; Yang YA; Liang YQ; Shan YT; Zhang CF; Zhang YR; Liang ZP Phytopathology; 2022 Dec; 112(12):2476-2485. PubMed ID: 35819334 [TBL] [Abstract][Full Text] [Related]
10. Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew. Tayeh C; Randoux B; Bourdon N; Reignault P J Plant Physiol; 2013 Dec; 170(18):1620-9. PubMed ID: 23880093 [TBL] [Abstract][Full Text] [Related]
11. MECHANISMS INVOLVED IN MYCORRHIZAL WHEAT PROTECTION AGAINST POWDERY MILDEW. Mustafa G; Tisserant B; Randoux B; Fontaine J; Sahraoui AL; Reignault P Commun Agric Appl Biol Sci; 2014; 79(3):403-10. PubMed ID: 26080475 [TBL] [Abstract][Full Text] [Related]
12. An important role for secreted esterase in disease establishment of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici. Feng J; Wang F; Hughes GR; Kaminskyj S; Wei Y Can J Microbiol; 2011 Mar; 57(3):211-6. PubMed ID: 21358762 [TBL] [Abstract][Full Text] [Related]
13. Studies on the control effect of Bacillus subtilis on wheat powdery mildew. Xie D; Cai X; Yang C; Xie L; Qin G; Zhang M; Huang Y; Gong G; Chang X; Chen H Pest Manag Sci; 2021 Oct; 77(10):4375-4382. PubMed ID: 33966348 [TBL] [Abstract][Full Text] [Related]
14. Defense responses induced by ulvan in wheat against powdery mildew caused by Blumeria graminis f. sp. tritici. Velho AC; Dall'Asta P; de Borba MC; Magnin-Robert M; Reignault P; Siah A; Stadnik MJ; Randoux B Plant Physiol Biochem; 2022 Aug; 184():14-25. PubMed ID: 35617771 [TBL] [Abstract][Full Text] [Related]
15. Differential expression of resistance to powdery mildew at the early stage of development in wheat line N0308. Alam MA; Hongpo W; Hong Z; Ji WQ Genet Mol Res; 2014 Jun; 13(2):4289-301. PubMed ID: 25036173 [TBL] [Abstract][Full Text] [Related]
16. Changes in lipid composition of Blumeria graminis f.sp. tritici conidia produced on wheat leaves treated with heptanoyl salicylic acid. Muchembled J; Sahraoui AL; Grandmougin-Ferjani A; Sancholle M Phytochemistry; 2006 Jun; 67(11):1104-9. PubMed ID: 16647727 [TBL] [Abstract][Full Text] [Related]
17. Biocontrol Potential of Zhu 朱墨 M; Zhang W; Duan X; Yan S; Cai Y; Gong S; Fahad S; Qiu Z Plant Dis; 2024 Oct; 108(10):2983-2988. PubMed ID: 38654537 [No Abstract] [Full Text] [Related]
18. Distinct defenses induced in wheat against powdery mildew by acetylated and nonacetylated oligogalacturonides. Randoux B; Renard-Merlier D; Mulard G; Rossard S; Duyme F; Sanssené J; Courtois J; Durand R; Reignault P Phytopathology; 2010 Dec; 100(12):1352-63. PubMed ID: 20684658 [TBL] [Abstract][Full Text] [Related]
19. Bio-Inspired Rhamnolipids, Cyclic Lipopeptides and a Chito-Oligosaccharide Confer Protection against Wheat Powdery Mildew and Inhibit Conidia Germination. Raouani NEH; Claverie E; Randoux B; Chaveriat L; Yaseen Y; Yada B; Martin P; Cabrera JC; Jacques P; Reignault P; Magnin-Robert M; Lounès-Hadj Sahraoui A Molecules; 2022 Oct; 27(19):. PubMed ID: 36235207 [TBL] [Abstract][Full Text] [Related]
20. Very-long-chain aldehydes induce appressorium formation in ascospores of the wheat powdery mildew fungus Blumeria graminis. Zhu M; Riederer M; Hildebrandt U Fungal Biol; 2017 Aug; 121(8):716-728. PubMed ID: 28705398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]