BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25760600)

  • 1. A disulfide-bond cascade mechanism for arsenic(III) S-adenosylmethionine methyltransferase.
    Marapakala K; Packianathan C; Ajees AA; Dheeman DS; Sankaran B; Kandavelu P; Rosen BP
    Acta Crystallogr D Biol Crystallogr; 2015 Mar; 71(Pt 3):505-15. PubMed ID: 25760600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of catalytic residues in the As(III) S-adenosylmethionine methyltransferase.
    Marapakala K; Qin J; Rosen BP
    Biochemistry; 2012 Feb; 51(5):944-51. PubMed ID: 22257120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Structure of an As(III) S-Adenosylmethionine Methyltransferase with 3-Coordinately Bound As(III) Depicts the First Step in Catalysis.
    Packianathan C; Kandavelu P; Rosen BP
    Biochemistry; 2018 Jul; 57(28):4083-4092. PubMed ID: 29894638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of an As(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation.
    Ajees AA; Marapakala K; Packianathan C; Sankaran B; Rosen BP
    Biochemistry; 2012 Jul; 51(27):5476-85. PubMed ID: 22712827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the third binding site of arsenic in human arsenic (III) methyltransferase.
    Li X; Geng Z; Chang J; Wang S; Song X; Hu X; Wang Z
    PLoS One; 2013; 8(12):e84231. PubMed ID: 24391919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The organoarsenical biocycle and the primordial antibiotic methylarsenite.
    Li J; Pawitwar SS; Rosen BP
    Metallomics; 2016 Oct; 8(10):1047-1055. PubMed ID: 27730229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reorientation of the Methyl Group in MAs(III) is the Rate-Limiting Step in the ArsM As(III)
    Packianathan C; Li J; Kandavelu P; Sankaran B; Rosen BP
    ACS Omega; 2018 Mar; 3(3):3104-3112. PubMed ID: 29600290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved cysteine residues determine substrate specificity in a novel As(III) S-adenosylmethionine methyltransferase from Aspergillus fumigatus.
    Chen J; Li J; Jiang X; Rosen BP
    Mol Microbiol; 2017 Apr; 104(2):250-259. PubMed ID: 28127843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Methylation by an ArsM
    Chen J; Galván AE; Viswanathan T; Yoshinaga M; Rosen BP
    Environ Sci Technol; 2022 Oct; 56(19):13858-13866. PubMed ID: 36112513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization and preliminary X-ray crystallographic analysis of the ArsM arsenic(III) S-adenosylmethionine methyltransferase.
    Marapakala K; Ajees AA; Qin J; Sankaran B; Rosen BP
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Sep; 66(Pt 9):1050-2. PubMed ID: 20823523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic methylation by a novel ArsM As(III) S-adenosylmethionine methyltransferase that requires only two conserved cysteine residues.
    Huang K; Xu Y; Packianathan C; Gao F; Chen C; Zhang J; Shen Q; Rosen BP; Zhao FJ
    Mol Microbiol; 2018 Jan; 107(2):265-276. PubMed ID: 29134708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylation of arsenic by recombinant human wild-type arsenic (+3 oxidation state) methyltransferase and its methionine 287 threonine (M287T) polymorph: Role of glutathione.
    Ding L; Saunders RJ; Drobná Z; Walton FS; Xun P; Thomas DJ; Stýblo M
    Toxicol Appl Pharmacol; 2012 Oct; 264(1):121-30. PubMed ID: 22868225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene.
    Chen J; Sun GX; Wang XX; Lorenzo Vd; Rosen BP; Zhu YG
    Environ Sci Technol; 2014 Sep; 48(17):10337-44. PubMed ID: 25122054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efflux Transporter ArsK Is Responsible for Bacterial Resistance to Arsenite, Antimonite, Trivalent Roxarsone, and Methylarsenite.
    Shi K; Li C; Rensing C; Dai X; Fan X; Wang G
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30315082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functions of crucial cysteine residues in the arsenite methylation catalyzed by recombinant human arsenic (III) methyltransferase.
    Wang S; Geng Z; Shi N; Li X; Wang Z
    PLoS One; 2014; 9(10):e110924. PubMed ID: 25349987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway of human AS3MT arsenic methylation.
    Dheeman DS; Packianathan C; Pillai JK; Rosen BP
    Chem Res Toxicol; 2014 Nov; 27(11):1979-89. PubMed ID: 25325836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organoarsenical tolerance in Sphingobacterium wenxiniae, a bacterium isolated from activated sludge.
    Chen J; Zhang J; Rosen BP
    Environ Microbiol; 2022 Feb; 24(2):762-771. PubMed ID: 33998126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and structural evaluation of cysteine residues in the human arsenic (+3 oxidation state) methyltransferase (hAS3MT).
    Song X; Geng Z; Li X; Zhao Q; Hu X; Zhang X; Wang Z
    Biochimie; 2011 Feb; 93(2):369-75. PubMed ID: 20971157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic 3 methyltransferase (AS3MT) automethylates on cysteine residues in vitro.
    Mersaoui SY; Guilbert C; Chou H; Douillet C; Bohle DS; Stýblo M; Richard S; Mann KK
    Arch Toxicol; 2022 May; 96(5):1371-1386. PubMed ID: 35244730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylation of arsenic differs with substrates in Arcticibacter tournemirensis R1 from an As-contaminated paddy soil.
    Zhou Q; Zhang J; Chen J
    Sci Total Environ; 2022 Sep; 838(Pt 4):156527. PubMed ID: 35679924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.