These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25760867)

  • 21. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone.
    Coldren GA; Barreto CR; Wykoff DD; Morrissey EM; Langley JA; Feller IC; Chapman SK
    Ecology; 2016 Nov; 97(11):3167-3175. PubMed ID: 27870028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts.
    Nettel A; Dodd RS
    Evolution; 2007 Apr; 61(4):958-71. PubMed ID: 17439624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment.
    Weaver CA; Armitage AR
    PLoS One; 2018; 13(3):e0193617. PubMed ID: 29494657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing Aedes vigilax Eggshell Densities in Saltmarsh and Mangrove Systems with Implications for Management.
    Dale P; Knight J; Griffin L
    Insects; 2014 Dec; 5(4):984-90. PubMed ID: 26462954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tropicalization of the barrier islands of the northern Gulf of Mexico: A comparison of herbivory and decomposition rates between smooth cordgrass (Spartina alterniflora) and black mangrove (Avicennia germinans).
    Macy A; Sharma S; Sparks E; Goff J; Heck KL; Johnson MW; Harper P; Cebrian J
    PLoS One; 2019; 14(1):e0210144. PubMed ID: 30615652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.
    Yando ES; Osland MJ; Hester MW
    Oecologia; 2018 May; 187(1):319-331. PubMed ID: 29497834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction between water and wind as a driver of passive dispersal in mangroves.
    Van der Stocken T; Vanschoenwinkel B; De Ryck DJ; Bouma TJ; Dahdouh-Guebas F; Koedam N
    PLoS One; 2015; 10(3):e0121593. PubMed ID: 25811191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple-geographic-scale genetic structure of two mangrove tree species: the roles of mating system, hybridization, limited dispersal and extrinsic factors.
    Mori GM; Zucchi MI; Souza AP
    PLoS One; 2015; 10(2):e0118710. PubMed ID: 25723532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Are seaward pneumatophore fringes transitional between mangrove and lower-shore system compartments?
    Barnes RS
    Mar Environ Res; 2017 Apr; 125():99-109. PubMed ID: 28196337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise.
    Donnelly JP; Bertness MD
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14218-23. PubMed ID: 11724926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting changes in molluscan spatial distributions in mangrove forests in response to sea level rise.
    Ma W; Wang M; Fu H; Tang C; Wang W
    Ecol Evol; 2022 Jul; 12(7):e9033. PubMed ID: 35845368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A seascape genetic analysis reveals strong biogeographical structuring driven by contrasting processes in the polyploid saltmarsh species Puccinellia maritima and Triglochin maritima.
    Rouger R; Jump AS
    Mol Ecol; 2014 Jul; 23(13):3158-70. PubMed ID: 24862943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hurricanes overcome migration lag and shape intraspecific genetic variation beyond a poleward mangrove range limit.
    Kennedy JP; Dangremond EM; Hayes MA; Preziosi RF; Rowntree JK; Feller IC
    Mol Ecol; 2020 Jul; 29(14):2583-2597. PubMed ID: 32573031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nutrient levels modify saltmarsh responses to increased inundation in different soil types.
    Wong JX; Van Colen C; Airoldi L
    Mar Environ Res; 2015 Mar; 104():37-46. PubMed ID: 25594372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.
    Adam Langley J; Mozdzer TJ; Shepard KA; Hagerty SB; Patrick Megonigal J
    Glob Chang Biol; 2013 May; 19(5):1495-503. PubMed ID: 23504873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facilitating your replacement? Ecosystem engineer legacy affects establishment success of an expanding competitor.
    Smith RS; Blaze JA; Osborne TZ; Byers JE
    Oecologia; 2018 Sep; 188(1):251-262. PubMed ID: 29948316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean.
    McKee KL; Rooth JE; Feller IC
    Ecol Appl; 2007 Sep; 17(6):1678-93. PubMed ID: 17913132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implications of Coastal Conditions and Sea-Level Rise on Mangrove Vulnerability: A Bio-Morphodynamic Modeling Study.
    Xie D; Schwarz C; Kleinhans MG; Zhou Z; van Maanen B
    J Geophys Res Earth Surf; 2022 Mar; 127(3):e2021JF006301. PubMed ID: 35860814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mangrove expansion and salt marsh decline at mangrove poleward limits.
    Saintilan N; Wilson NC; Rogers K; Rajkaran A; Krauss KW
    Glob Chang Biol; 2014 Jan; 20(1):147-57. PubMed ID: 23907934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zonation of mangrove flora and fauna in a subtropical estuarine wetland based on surface elevation.
    Ma W; Wang W; Tang C; Chen G; Wang M
    Ecol Evol; 2020 Jul; 10(14):7404-7418. PubMed ID: 32760537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.