These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 25760952)

  • 1. Evaluation of air photoactivation at linear accelerators for radiotherapy.
    Tana L; Ciolini R; Ciuffardi E; Romei C; d'Errico F
    J Radiol Prot; 2015 Jun; 35(2):239-48. PubMed ID: 25760952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct air activation measurements at a 15-MV medical linear accelerator.
    Saeed MK; Poppe B; Fischer HW
    Radiat Prot Dosimetry; 2015 Feb; 163(2):233-7. PubMed ID: 24795383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photon doses at the entrance of 60Co and low-energy medical accelerator rooms under unusual irradiation conditions.
    Facure A; Cardoso SC; da Rosa LA; da Silva AX
    Radiat Prot Dosimetry; 2010 Mar; 138(3):251-6. PubMed ID: 19965909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Be aware of neutrons outside short mazes from 10-MV linear accelerators X-rays in radiotherapy facilities.
    Brockstedt S; Holstein H; Jakobsson L; Tomaszewicz A; Knöös T
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):464-7. PubMed ID: 25802465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutron dose calculation at the maze entrance of medical linear accelerator rooms.
    Falcão RC; Facure A; Silva AX
    Radiat Prot Dosimetry; 2007; 123(3):283-7. PubMed ID: 17005540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation protection system at the RIKEN RI beam factory.
    Uwamino Y; Fujita S; Sakamoto H; Ito S; Fukunishi N; Yabutani T; Yamano T; Fukumura A
    Radiat Prot Dosimetry; 2005; 115(1-4):279-83. PubMed ID: 16381729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A measuring system with a recombination chamber for neutron dosimetry around medical accelerators.
    Golnik N; Kamiński P; Zielczyński M
    Radiat Prot Dosimetry; 2004; 110(1-4):273-6. PubMed ID: 15353658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation of patient imaging doses with scanning parameters for linac-integrated kilovoltage cone beam CT.
    Liao X; Wang Y; Lang J; Wang P; Li J; Ge R; Yang J
    Biomed Mater Eng; 2015; 26 Suppl 1():S1659-67. PubMed ID: 26405932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutron contamination of 10 MV X-rays: its relevance to treatment room door and maze design.
    Rudd PJ; Prior D; Austin-Smith S
    Br J Radiol; 2007 Jun; 80(954):469-75. PubMed ID: 17360932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of activation products and induced dose rates in different high-energy medical linear accelerators.
    Fischer HW; Tabot B; Poppe B
    Health Phys; 2008 Mar; 94(3):272-8. PubMed ID: 18301101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skyshine radiation resulting from 6 MV and 10 MV photon beams from a medical accelerator.
    Elder DH; Harmon JF; Borak TB
    Health Phys; 2010 Jul; 99(1):17-25. PubMed ID: 20539121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Undesirable nuclear reactions and induced radioactivity as a result of the use of the high-energy therapeutic beams generated by medical linacs.
    Konefal A; Polaczek-Grelik K; Zipper W
    Radiat Prot Dosimetry; 2008; 128(2):133-45. PubMed ID: 17569692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the fluence response of the GSI neutron ball dosemeter in the energy range from thermal to 19 MeV.
    Fehrenbacher G; Kozlova E; Gutermuth F; Radon T; Schütz R; Nolte R; Böttger R
    Radiat Prot Dosimetry; 2007; 126(1-4):546-8. PubMed ID: 17561518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the photoneutron field produced in a medical linear accelerator.
    Kim HS; Park YH; Koo BC; Kwon JW; Lee JS; Choi HS
    Radiat Prot Dosimetry; 2007; 123(3):323-8. PubMed ID: 17077093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a wrist dosimeter prototype for radiation monitoring ((153)Sm) during a therapeutic procedure simulation.
    Cecatti SG; Guimarães MI; Caldas LV
    J Radiol Prot; 2009 Dec; 29(4):519-25. PubMed ID: 19923645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiological protection evaluation of the Bucharest Tandetron 3 MV accelerator.
    Mitu IO; Floare G; Ghiţă DG; Moşu DV; Căta-Danil G
    J Radiol Prot; 2015 Jun; 35(2):285-95. PubMed ID: 25826271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of the neutron dose near a 15 Mv medical linear accelerator.
    Golnik N; Zielczynski M; Bulski W; Tulik P; Palko T
    Radiat Prot Dosimetry; 2007; 126(1-4):619-22. PubMed ID: 17513292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation safety survey on a flattening filter-free medical accelerator.
    Vassiliev ON; Titt U; Kry SF; Mohan R; Gillin MT
    Radiat Prot Dosimetry; 2007; 124(2):187-90. PubMed ID: 17681966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skyshine photon doses from 6 and 10 MV medical linear accelerators.
    de Paiva E; da Rosa LA
    J Appl Clin Med Phys; 2012 Jan; 13(1):3671. PubMed ID: 22231219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of activation products to occupational exposure following treatment using high-energy photons in radiotherapy.
    Petrović N; Krestić-Vesović J; Stojanović D; Ciraj-Bjelac O; Lazarević D; Kovacević M
    Radiat Prot Dosimetry; 2011 Jan; 143(1):109-12. PubMed ID: 20947589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.