BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25761008)

  • 1. Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.
    Qin Y; Zhang L; Lv J; Luo S; Cheng JP
    Org Lett; 2015 Mar; 17(6):1469-72. PubMed ID: 25761008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic catalytic systems inspired by copper amine oxidases: recent developments and synthetic applications.
    Largeron M
    Org Biomol Chem; 2017 Jun; 15(22):4722-4730. PubMed ID: 28474720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmentally friendly chemoselective oxidation of primary aliphatic amines by using a biomimetic electrocatalytic system.
    Largeron M; Chiaroni A; Fleury MB
    Chemistry; 2008; 14(3):996-1003. PubMed ID: 17992680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.
    Largeron M; Fleury MB
    Chemistry; 2015 Feb; 21(9):3815-20. PubMed ID: 25643811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinone-Catalyzed Selective Oxidation of Organic Molecules.
    Wendlandt AE; Stahl SS
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14638-58. PubMed ID: 26530485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system.
    Samec JS; Ell AH; Bäckvall JE
    Chemistry; 2005 Apr; 11(8):2327-34. PubMed ID: 15706621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-catalyzed direct synthesis of imines from amines or alcohols and amines via aerobic oxidative reactions under air.
    Zhang E; Tian H; Xu S; Yu X; Xu Q
    Org Lett; 2013 Jun; 15(11):2704-7. PubMed ID: 23683112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.
    Deng W; Chen J; Kang J; Zhang Q; Wang Y
    Chem Commun (Camb); 2016 May; 52(41):6805-8. PubMed ID: 27125360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic Studies on Bioinspired Aerobic C-H Oxidation of Amines with an ortho-Quinone Catalyst.
    Zhang R; Qin Y; Zhang L; Luo S
    J Org Chem; 2019 Mar; 84(5):2542-2555. PubMed ID: 30753779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines.
    Wendlandt AE; Stahl SS
    Org Lett; 2012 Jun; 14(11):2850-3. PubMed ID: 22594886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azobisisobutyronitrile initiated aerobic oxidative transformation of amines: coupling of primary amines and cyanation of tertiary amines.
    Liu L; Wang Z; Fu X; Yan CH
    Org Lett; 2012 Nov; 14(22):5692-5. PubMed ID: 23106189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst.
    Wendlandt AE; Stahl SS
    J Am Chem Soc; 2014 Jan; 136(1):506-12. PubMed ID: 24328193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α,β-Unsaturated imines via Ru-catalyzed coupling of allylic alcohols and amines.
    Rigoli JW; Moyer SA; Pearce SD; Schomaker JM
    Org Biomol Chem; 2012 Mar; 10(9):1746-9. PubMed ID: 22266838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly stereoselective metal-free catalytic reduction of imines: an easy entry to enantiomerically pure amines and natural and unnatural alpha-amino esters.
    Guizzetti S; Benaglia M; Rossi S
    Org Lett; 2009 Jul; 11(13):2928-31. PubMed ID: 19480447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deaminative Olefination of Methyl
    Thorve PR; Maji B
    Org Lett; 2021 Jan; 23(2):542-547. PubMed ID: 33410694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2.
    Lang X; Ji H; Chen C; Ma W; Zhao J
    Angew Chem Int Ed Engl; 2011 Apr; 50(17):3934-7. PubMed ID: 21374768
    [No Abstract]   [Full Text] [Related]  

  • 17. LIC-KOR-promoted synthesis of alkoxydienyl amines: an entry to 2,3,4,5-tetrasubstituted pyrroles.
    Blangetti M; Deagostino A; Prandi C; Tabasso S; Venturello P
    Org Lett; 2009 Sep; 11(17):3914-7. PubMed ID: 19655734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boron-Catalyzed Silylative Reduction of Nitriles in Accessing Primary Amines and Imines.
    Gandhamsetty N; Jeong J; Park J; Park S; Chang S
    J Org Chem; 2015 Jul; 80(14):7281-7. PubMed ID: 26152758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biologically inspired Cu(I)/topaquinone-like co-catalytic system for the highly atom-economical aerobic oxidation of primary amines to imines.
    Largeron M; Fleury MB
    Angew Chem Int Ed Engl; 2012 May; 51(22):5409-12. PubMed ID: 22499249
    [No Abstract]   [Full Text] [Related]  

  • 20. Organocatalytic asymmetric Friedel-Crafts alkylation of indoles with simple alpha,beta-unsaturated ketones.
    Bartoli G; Bosco M; Carlone A; Pesciaioli F; Sambri L; Melchiorre P
    Org Lett; 2007 Mar; 9(7):1403-5. PubMed ID: 17346059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.