These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 25761585)

  • 21. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation.
    Li X; Liu D; Xiao Z; Zhao Y; Han S; Chen B; Dai J
    Biomaterials; 2019 Mar; 197():20-31. PubMed ID: 30639547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy.
    Romero MI; Rangappa N; Garry MG; Smith GM
    J Neurosci; 2001 Nov; 21(21):8408-16. PubMed ID: 11606629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury.
    Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustained-release of FGF-2 from a hybrid hydrogel of heparin-poloxamer and decellular matrix promotes the neuroprotective effects of proteins after spinal injury.
    Xu HL; Tian FR; Xiao J; Chen PP; Xu J; Fan ZL; Yang JJ; Lu CT; Zhao YZ
    Int J Nanomedicine; 2018; 13():681-694. PubMed ID: 29440894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photosensitive Hydrogel Creates Favorable Biologic Niches to Promote Spinal Cord Injury Repair.
    Cai Z; Gan Y; Bao C; Wu W; Wang X; Zhang Z; Zhou Q; Lin Q; Yang Y; Zhu L
    Adv Healthc Mater; 2019 Jul; 8(13):e1900013. PubMed ID: 31074122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Basic fibroblast growth factor (bFGF) enhances tissue sparing and functional recovery following moderate spinal cord injury.
    Rabchevsky AG; Fugaccia I; Fletcher-Turner A; Blades DA; Mattson MP; Scheff SW
    J Neurotrauma; 1999 Sep; 16(9):817-30. PubMed ID: 10521141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Treatment with basic fibroblast growth factor-incorporated gelatin hydrogel does not exacerbate mechanical allodynia after spinal cord contusion injury in rats.
    Furuya T; Hashimoto M; Koda M; Murata A; Okawa A; Dezawa M; Matsuse D; Tabata Y; Takahashi K; Yamazaki M
    J Spinal Cord Med; 2013 Mar; 36(2):134-9. PubMed ID: 23809528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diffusion tensor imaging predicting neurological repair of spinal cord injury with transplanting collagen/chitosan scaffold binding bFGF.
    Liu XY; Liang J; Wang Y; Zhong L; Zhao CY; Wei MG; Wang JJ; Sun XZ; Wang KQ; Duan JH; Chen C; Tu Y; Zhang S; Ming D; Li XH
    J Mater Sci Mater Med; 2019 Nov; 30(11):123. PubMed ID: 31686219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of acrylamide on neurological recovery following spinal cord injury in rats.
    Al Moutaery K; Morais C; Biary N; Al Deeb S; Tariq M
    Acta Neurochir (Wien); 1999; 141(9):989-98; discussion 998-9. PubMed ID: 10526081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium.
    Garbern JC; Minami E; Stayton PS; Murry CE
    Biomaterials; 2011 Mar; 32(9):2407-16. PubMed ID: 21186056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats.
    Chen BK; Madigan NN; Hakim JS; Dadsetan M; McMahon SS; Yaszemski MJ; Windebank AJ
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e398-e407. PubMed ID: 28296347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration.
    Khankan RR; Griffis KG; Haggerty-Skeans JR; Zhong H; Roy RR; Edgerton VR; Phelps PE
    J Neurosci; 2016 Jun; 36(23):6269-86. PubMed ID: 27277804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sciatic nerve grafting and inoculation of FGF-2 promotes improvement of motor behavior and fiber regrowth in rats with spinal cord transection.
    Guzen FP; Soares JG; de Freitas LM; Cavalcanti JR; Oliveira FG; Araújo JF; Cavalcante Jde S; Cavalcante JC; do Nascimento ES; de Oliveira Costa MS
    Restor Neurol Neurosci; 2012; 30(3):265-75. PubMed ID: 22555431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury.
    Hassannejad Z; Zadegan SA; Vaccaro AR; Rahimi-Movaghar V; Sabzevari O
    Injury; 2019 Feb; 50(2):278-285. PubMed ID: 30595411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implantable porous gelatin microspheres sustained release of bFGF and improved its neuroprotective effect on rats after spinal cord injury.
    Lan L; Tian FR; ZhuGe DL; ZhuGe QC; Shen BX; Jin BH; Huang JP; Wu MZ; Fan LX; Zhao YZ; Xu HL
    PLoS One; 2017; 12(3):e0173814. PubMed ID: 28291798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The repair and autophagy mechanisms of hypoxia-regulated bFGF-modified primary embryonic neural stem cells in spinal cord injury.
    Zhu S; Chen M; Deng L; Zhang J; Ni W; Wang X; Yao F; Li X; Xu H; Xu J; Xiao J
    Stem Cells Transl Med; 2020 May; 9(5):603-619. PubMed ID: 32027101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acellular spinal cord scaffold seeded with bone marrow stromal cells protects tissue and promotes functional recovery in spinal cord-injured rats.
    Chen J; Zhang Z; Liu J; Zhou R; Zheng X; Chen T; Wang L; Huang M; Yang C; Li Z; Yang C; Bai X; Jin D
    J Neurosci Res; 2014 Mar; 92(3):307-17. PubMed ID: 24375695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair.
    Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E
    J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation.
    Estrada V; Brazda N; Schmitz C; Heller S; Blazyca H; Martini R; Müller HW
    Neurobiol Dis; 2014 Jul; 67():165-79. PubMed ID: 24713436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.