These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 25761607)
1. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach. Ehsani H; Rostami M; Gudarzi M Comput Methods Biomech Biomed Engin; 2016 Feb; 19(3):306-319. PubMed ID: 25761607 [TBL] [Abstract][Full Text] [Related]
2. Generating dynamic simulations of movement using computed muscle control. Thelen DG; Anderson FC; Delp SL J Biomech; 2003 Mar; 36(3):321-8. PubMed ID: 12594980 [TBL] [Abstract][Full Text] [Related]
3. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology. Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156 [TBL] [Abstract][Full Text] [Related]
4. A full body musculoskeletal model based on flexible multibody simulation approach utilised in bone strain analysis during human locomotion. Al Nazer R; Klodowski A; Rantalainen T; Heinonen A; Sievänen H; Mikkola A Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):573-9. PubMed ID: 21302163 [TBL] [Abstract][Full Text] [Related]
5. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach. Heintz S; Gutierrez-Farewik EM Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088 [TBL] [Abstract][Full Text] [Related]
6. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion. Lin HT; Su FC; Wu HW; An KN Proc Inst Mech Eng H; 2004; 218(4):213-21. PubMed ID: 15376723 [TBL] [Abstract][Full Text] [Related]
7. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. Seth A; Pandy MG J Biomech; 2007; 40(2):356-66. PubMed ID: 16513124 [TBL] [Abstract][Full Text] [Related]
8. Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models. Halloran JP; Erdemir A; van den Bogert AJ J Biomech Eng; 2009 Jan; 131(1):011014. PubMed ID: 19045930 [TBL] [Abstract][Full Text] [Related]
9. A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations. S Shourijeh M; Smale KB; Potvin BM; Benoit DL J Biomech; 2016 Jun; 49(9):1718-1723. PubMed ID: 27106173 [TBL] [Abstract][Full Text] [Related]
10. A Lagrange-based generalised formulation for the equations of motion of simple walking models. McGrath M; Howard D; Baker R J Biomech; 2017 Apr; 55():139-143. PubMed ID: 28284668 [TBL] [Abstract][Full Text] [Related]
11. A musculoskeletal foot model for clinical gait analysis. Saraswat P; Andersen MS; Macwilliams BA J Biomech; 2010 Jun; 43(9):1645-52. PubMed ID: 20385385 [TBL] [Abstract][Full Text] [Related]
12. The influence of biophysical muscle properties on simulating fast human arm movements. Bayer A; Schmitt S; Günther M; Haeufle DFB Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):803-821. PubMed ID: 28387534 [TBL] [Abstract][Full Text] [Related]
13. The influence of an elastic tendon on the force producing capabilities of a muscle during dynamic movements. Domire ZJ; Challis JH Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):337-41. PubMed ID: 17852179 [TBL] [Abstract][Full Text] [Related]
14. Estimation of muscle forces in gait using a simulation of the electromyographic activity and numerical optimization. Ravera EP; Crespo MJ; Braidot AA Comput Methods Biomech Biomed Engin; 2016; 19(1):1-12. PubMed ID: 25408069 [TBL] [Abstract][Full Text] [Related]
15. Dynamic motion planning of 3D human locomotion using gradient-based optimization. Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851 [TBL] [Abstract][Full Text] [Related]
16. Comparison of different methods for estimating muscle forces in human movement. Lin YC; Dorn TW; Schache AG; Pandy MG Proc Inst Mech Eng H; 2012 Feb; 226(2):103-12. PubMed ID: 22468462 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem. De Groote F; Kinney AL; Rao AV; Fregly BJ Ann Biomed Eng; 2016 Oct; 44(10):2922-2936. PubMed ID: 27001399 [TBL] [Abstract][Full Text] [Related]
18. Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion. Selk Ghafari A; Meghdari A; Vossoughi G Proc Inst Mech Eng H; 2009 Aug; 223(6):663-75. PubMed ID: 19743633 [TBL] [Abstract][Full Text] [Related]
19. Force enhancement and force depression in a modified muscle model used for muscle activation prediction. Kosterina N; Wang R; Eriksson A; Gutierrez-Farewik EM J Electromyogr Kinesiol; 2013 Aug; 23(4):759-65. PubMed ID: 23561824 [TBL] [Abstract][Full Text] [Related]
20. EMG-Driven Optimal Estimation of Subject-SPECIFIC Hill Model Muscle-Tendon Parameters of the Knee Joint Actuators. Falisse A; Van Rossom S; Jonkers I; De Groote F IEEE Trans Biomed Eng; 2017 Sep; 64(9):2253-2262. PubMed ID: 27875132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]