These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25761700)

  • 1. Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions.
    MacMillan HA; Andersen JL; Loeschcke V; Overgaard J
    Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(10):R823-31. PubMed ID: 25761700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional plasticity of the gut and the Malpighian tubules underlies cold acclimation and mitigates cold-induced hyperkalemia in
    Yerushalmi GY; Misyura L; MacMillan HA; Donini A
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29367271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance.
    MacMillan HA; Ferguson LV; Nicolai A; Donini A; Staples JF; Sinclair BJ
    J Exp Biol; 2015 Feb; 218(Pt 3):423-32. PubMed ID: 25524989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chill-tolerant Gryllus crickets maintain ion balance at low temperatures.
    Coello Alvarado LE; MacMillan HA; Sinclair BJ
    J Insect Physiol; 2015 Jun; 77():15-25. PubMed ID: 25846013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic dietary salt stress mitigates hyperkalemia and facilitates chill coma recovery in Drosophila melanogaster.
    Yerushalmi GY; Misyura L; Donini A; MacMillan HA
    J Insect Physiol; 2016 Dec; 95():89-97. PubMed ID: 27642001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance.
    MacMillan HA; Andersen JL; Davies SA; Overgaard J
    Sci Rep; 2015 Dec; 5():18607. PubMed ID: 26678786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal acclimation alters Na
    Cheslock A; Andersen MK; MacMillan HA
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Jun; 256():110934. PubMed ID: 33684554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversing sodium differentials between the hemolymph and hindgut speeds chill coma recovery but reduces survival in the fall field cricket, Gryllus pennsylvanicus.
    Lebenzon JE; Des Marteaux LE; Sinclair BJ
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Jun; 244():110699. PubMed ID: 32247007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study.
    Olsson T; MacMillan HA; Nyberg N; Staerk D; Malmendal A; Overgaard J
    J Exp Biol; 2016 Aug; 219(Pt 16):2504-13. PubMed ID: 27307488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary potassium and cold acclimation additively increase cold tolerance in Drosophila melanogaster.
    Helou B; Ritchie MW; MacMillan HA; Andersen MK
    J Insect Physiol; 2024 Sep; 159():104701. PubMed ID: 39251183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure.
    Des Marteaux LE; Sinclair BJ
    J Insect Physiol; 2016 Jun; 89():19-27. PubMed ID: 27039031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity in Na+/K+-ATPase thermal kinetics drives variation in the temperature of cold-induced neural shutdown of adult Drosophila melanogaster.
    Andersen MK; Robertson RM; MacMillan HA
    J Exp Biol; 2022 Dec; 225(24):. PubMed ID: 36477887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold tolerance of
    Andersen MK; MacMillan HA; Donini A; Overgaard J
    J Exp Biol; 2017 Nov; 220(Pt 22):4261-4269. PubMed ID: 28947500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a high cholesterol diet on chill tolerance are highly context-dependent in Drosophila.
    Allen MC; Ritchie MW; El-Saadi MI; MacMillan HA
    J Therm Biol; 2024 Jan; 119():103789. PubMed ID: 38340464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warm periods in repeated cold stresses protect Drosophila against ionoregulatory collapse, chilling injury, and reproductive deficits.
    El-Saadi MI; Ritchie MW; Davis HE; MacMillan HA
    J Insect Physiol; 2020; 123():104055. PubMed ID: 32380094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues.
    Des Marteaux LE; McKinnon AH; Udaka H; Toxopeus J; Sinclair BJ
    BMC Genomics; 2017 May; 18(1):357. PubMed ID: 28482796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperkalaemia, not apoptosis, accurately predicts insect chilling injury.
    Carrington J; Andersen MK; Brzezinski K; MacMillan HA
    Proc Biol Sci; 2020 Dec; 287(1941):20201663. PubMed ID: 33323084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary salt supplementation adversely affects thermal acclimation responses of flight ability in Drosophila melanogaster.
    Huisamen EJ; Colinet H; Karsten M; Terblanche JS
    J Insect Physiol; 2022 Jul; 140():104403. PubMed ID: 35667397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent effects of cold and hyperkalaemia cause insect chilling injury.
    MacMillan HA; Baatrup E; Overgaard J
    Proc Biol Sci; 2015 Oct; 282(1817):20151483. PubMed ID: 26468241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-diuretic activity of a CAPA neuropeptide can compromise
    MacMillan HA; Nazal B; Wali S; Yerushalmi GY; Misyura L; Donini A; Paluzzi JP
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30104306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.