These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 25762146)

  • 1. Vapour-mediated sensing and motility in two-component droplets.
    Cira NJ; Benusiglio A; Prakash M
    Nature; 2015 Mar; 519(7544):446-50. PubMed ID: 25762146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-component marangoni-contracted droplets: friction and shape.
    Benusiglio A; Cira NJ; Prakash M
    Soft Matter; 2018 Sep; 14(37):7724-7730. PubMed ID: 30191241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous spreading and evaporation: recent developments.
    Semenov S; Trybala A; Rubio RG; Kovalchuk N; Starov V; Velarde MG
    Adv Colloid Interface Sci; 2014 Apr; 206():382-98. PubMed ID: 24075076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uni-Directional Transportation on Peristome-Mimetic Surfaces for Completely Wetting Liquids.
    Li C; Li N; Zhang X; Dong Z; Chen H; Jiang L
    Angew Chem Int Ed Engl; 2016 Nov; 55(48):14988-14992. PubMed ID: 27654652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular origin of contact line stick-slip motion during droplet evaporation.
    Wang F; Wu H
    Sci Rep; 2015 Dec; 5():17521. PubMed ID: 26628084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces.
    McLauchlin ML; Yang D; Aella P; Garcia AA; Picraux ST; Hayes MA
    Langmuir; 2007 Apr; 23(9):4871-7. PubMed ID: 17381139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling the pinning force of liquid droplets on liquid infused surfaces.
    Sadullah MS; Panter JR; Kusumaatmaja H
    Soft Matter; 2020 Sep; 16(35):8114-8121. PubMed ID: 32734997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.
    Choi CH; Kim CJ
    Langmuir; 2009 Jul; 25(13):7561-7. PubMed ID: 19518098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS).
    Guan JH; Wells GG; Xu B; McHale G; Wood D; Martin J; Stuart-Cole S
    Langmuir; 2015 Nov; 31(43):11781-9. PubMed ID: 26446177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates.
    Sefiane K; Bennacer R
    Adv Colloid Interface Sci; 2009; 147-148():263-71. PubMed ID: 19019321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in droplet wetting and evaporation.
    Brutin D; Starov V
    Chem Soc Rev; 2018 Jan; 47(2):558-585. PubMed ID: 29090296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tears of wine: The dance of the droplets.
    Nikolov A; Wasan D; Lee J
    Adv Colloid Interface Sci; 2018 Jun; 256():94-100. PubMed ID: 29776585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet compression and relaxation by a superhydrophobic surface: contact angle hysteresis.
    Hong SJ; Chou TH; Chan SH; Sheng YJ; Tsao HK
    Langmuir; 2012 Apr; 28(13):5606-13. PubMed ID: 22390774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.