BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25762324)

  • 1. Rhodopsin/lipid hydrophobic matching-rhodopsin oligomerization and function.
    Soubias O; Teague WE; Hines KG; Gawrisch K
    Biophys J; 2015 Mar; 108(5):1125-32. PubMed ID: 25762324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid-rhodopsin hydrophobic mismatch alters rhodopsin helical content.
    Soubias O; Niu SL; Mitchell DC; Gawrisch K
    J Am Chem Soc; 2008 Sep; 130(37):12465-71. PubMed ID: 18712874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological changes in bilayer thickness induced by cholesterol control GPCR rhodopsin function.
    Soubias O; Sodt AJ; Teague WE; Hines KG; Gawrisch K
    Biophys J; 2023 Mar; 122(6):973-983. PubMed ID: 36419350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes.
    Botelho AV; Huber T; Sakmar TP; Brown MF
    Biophys J; 2006 Dec; 91(12):4464-77. PubMed ID: 17012328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic mismatch between helices and lipid bilayers.
    Weiss TM; van der Wel PC; Killian JA; Koeppe RE; Huang HW
    Biophys J; 2003 Jan; 84(1):379-85. PubMed ID: 12524291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins.
    Venturoli M; Smit B; Sperotto MM
    Biophys J; 2005 Mar; 88(3):1778-98. PubMed ID: 15738466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the lipid matrix for structure and function of the GPCR rhodopsin.
    Soubias O; Gawrisch K
    Biochim Biophys Acta; 2012 Feb; 1818(2):234-40. PubMed ID: 21924236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch.
    Yeagle PL; Bennett M; Lemaître V; Watts A
    Biochim Biophys Acta; 2007 Mar; 1768(3):530-7. PubMed ID: 17223071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
    Brown MF; Salgado GF; Struts AV
    Biochim Biophys Acta; 2010 Feb; 1798(2):177-93. PubMed ID: 19716801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of sn-1-saturated,sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I in equilibrium with metarhodopsin II equilibrium.
    Mitchell DC; Straume M; Litman BJ
    Biochemistry; 1992 Jan; 31(3):662-70. PubMed ID: 1731921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional reconstitution of rhodopsin into tubular lipid bilayers supported by nanoporous media.
    Soubias O; Polozov IV; Teague WE; Yeliseev AA; Gawrisch K
    Biochemistry; 2006 Dec; 45(51):15583-90. PubMed ID: 17176079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy.
    Caputo GA
    Methods Mol Biol; 2013; 1063():95-116. PubMed ID: 23975773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ; Brown MF
    Biochemistry; 1993 Mar; 32(9):2438-54. PubMed ID: 8443184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers.
    Cordomí A; Perez JJ
    J Phys Chem B; 2007 Jun; 111(25):7052-63. PubMed ID: 17530884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids.
    Botelho AV; Gibson NJ; Thurmond RL; Wang Y; Brown MF
    Biochemistry; 2002 May; 41(20):6354-68. PubMed ID: 12009897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-induced bilayer perturbations: Lipid ordering and hydrophobic coupling.
    Petersen FN; Laursen I; Bohr H; Nielsen CH
    Biochem Biophys Res Commun; 2009 Oct; 387(4):760-5. PubMed ID: 19635454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction.
    Wang Y; Botelho AV; Martinez GV; Brown MF
    J Am Chem Soc; 2002 Jul; 124(26):7690-701. PubMed ID: 12083922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of rhodopsin function by properties of the membrane bilayer.
    Brown MF
    Chem Phys Lipids; 1994 Sep; 73(1-2):159-80. PubMed ID: 8001180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.