These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25762325)

  • 21. Motility of dimeric ncd on a metal-chelating surfactant: evidence that ncd is not processive.
    deCastro MJ; Ho CH; Stewart RJ
    Biochemistry; 1999 Apr; 38(16):5076-81. PubMed ID: 10213610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A non-mitotic CENP-E homolog in Dictyostelium discoideum with slow motor activity.
    Kösem S; Ökten Z; Ho TH; Trommler G; Koonce MP; Samereier M; Müller-Taubenberger A
    Biochem Biophys Res Commun; 2013 Feb; 431(3):490-5. PubMed ID: 23333327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules.
    Peterman EJ; Sosa H; Goldstein LS; Moerner WE
    Biophys J; 2001 Nov; 81(5):2851-63. PubMed ID: 11606296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence imaging of single Kinesin motors on immobilized microtubules.
    Korten T; Nitzsche B; Gell C; Ruhnow F; Leduc C; Diez S
    Methods Mol Biol; 2011; 783():121-37. PubMed ID: 21909886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational changes, diffusion and collective behavior in monomeric kinesin-based motility.
    Huang KC; Vega C; Gopinathan A
    J Phys Condens Matter; 2011 Sep; 23(37):374106. PubMed ID: 21862841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity.
    Arimura N; Hattori A; Kimura T; Nakamuta S; Funahashi Y; Hirotsune S; Furuta K; Urano T; Toyoshima YY; Kaibuchi K
    J Neurochem; 2009 Oct; 111(2):380-90. PubMed ID: 19659462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-headed kinesin derivatives move by a nonprocessive, low-duty ratio mechanism unlike that of two-headed kinesin.
    Young EC; Mahtani HK; Gelles J
    Biochemistry; 1998 Mar; 37(10):3467-79. PubMed ID: 9521668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional surface attachment in a sandwich geometry of GFP-labeled motor proteins.
    Bormuth V; Zörgibel F; Schäffer E; Howard J
    Methods Mol Biol; 2011; 778():11-8. PubMed ID: 21809197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How kinesin waits between steps.
    Mori T; Vale RD; Tomishige M
    Nature; 2007 Nov; 450(7170):750-4. PubMed ID: 18004302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical characterization of the novel rice kinesin K23 and its kinetic study using fluorescence resonance energy transfer between an intrinsic tryptophan residue and a fluorescent ATP analogue.
    Umezu N; Hanzawa N; Yamada MD; Kondo K; Mitsui T; Maruta S
    J Biochem; 2011 May; 149(5):539-50. PubMed ID: 21278385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Versatile protein tagging in cells with split fluorescent protein.
    Kamiyama D; Sekine S; Barsi-Rhyne B; Hu J; Chen B; Gilbert LA; Ishikawa H; Leonetti MD; Marshall WF; Weissman JS; Huang B
    Nat Commun; 2016 Mar; 7():11046. PubMed ID: 26988139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulfonated red and far-red rhodamines to visualize SNAP- and Halo-tagged cell surface proteins.
    Birke R; Ast J; Roosen DA; Lee J; Roßmann K; Huhn C; Mathes B; Lisurek M; Bushiri D; Sun H; Jones B; Lehmann M; Levitz J; Haucke V; Hodson DJ; Broichhagen J
    Org Biomol Chem; 2022 Aug; 20(30):5967-5980. PubMed ID: 35188523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Choosing the right label for single-molecule tracking in live bacteria: side-by-side comparison of photoactivatable fluorescent protein and Halo tag dyes.
    Banaz N; Mäkelä J; Uphoff S
    J Phys D Appl Phys; 2019 Feb; 52(6):064002. PubMed ID: 30799881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The intracellular transport and secretion of calumenin-1/2 in living cells.
    Wang Q; Feng H; Zheng P; Shen B; Chen L; Liu L; Liu X; Hao Q; Wang S; Chen J; Teng J
    PLoS One; 2012; 7(4):e35344. PubMed ID: 22514732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy.
    Liss V; Barlag B; Nietschke M; Hensel M
    Sci Rep; 2015 Dec; 5():17740. PubMed ID: 26643905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of an ON/OFF switchable fluorescent probe targeting His tag fused proteins in living cells.
    Okitsu K; Misawa T; Shoda T; Kurihara M; Demizu Y
    Bioorg Med Chem Lett; 2017 Aug; 27(15):3417-3422. PubMed ID: 28647351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of mNeonGreen for Homo sapiens increases its fluorescent intensity in mammalian cells.
    Tanida-Miyake E; Koike M; Uchiyama Y; Tanida I
    PLoS One; 2018; 13(1):e0191108. PubMed ID: 29342181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Fluorogenic AggTag Method Based on Halo- and SNAP-Tags to Simultaneously Detect Aggregation of Two Proteins in Live Cells.
    Jung KH; Kim SF; Liu Y; Zhang X
    Chembiochem; 2019 Apr; 20(8):1078-1087. PubMed ID: 30609255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PhotoGate microscopy to track single molecules in crowded environments.
    Belyy V; Shih SM; Bandaria J; Huang Y; Lawrence RE; Zoncu R; Yildiz A
    Nat Commun; 2017 Jan; 8():13978. PubMed ID: 28071667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Molecule Imaging and Computational Microscopy Approaches Clarify the Mechanism of the Dimerization and Membrane Interactions of Green Fluorescent Protein.
    Wang X; Song K; Li Y; Tang L; Deng X
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30897814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.