These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25762326)

  • 21. A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase.
    Gao YQ; Yang W; Karplus M
    Cell; 2005 Oct; 123(2):195-205. PubMed ID: 16239139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Electrostatic interactions in catalytic centers of F1-ATPase].
    Tikhonov AN; Pogrebnaia AF; Romanovskiĭ IuM
    Biofizika; 2003; 48(6):1052-70. PubMed ID: 14714522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic and coordinating domain motions in the active subunits of the F1-ATPase molecular motor.
    Liu MS; Todd BD; Sadus RJ
    Biochim Biophys Acta; 2006 Oct; 1764(10):1553-60. PubMed ID: 17010684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deciphering Intrinsic Inter-subunit Couplings that Lead to Sequential Hydrolysis of F
    Dai L; Flechsig H; Yu J
    Biophys J; 2017 Oct; 113(7):1440-1453. PubMed ID: 28978438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulations of F1-ATPase.
    Ito Y; Ikeguchi M
    Adv Exp Med Biol; 2014; 805():411-40. PubMed ID: 24446371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amputation of a C-terminal helix of the γ subunit increases ATP-hydrolysis activity of cyanobacterial F
    Kondo K; Takeyama Y; Sunamura EI; Madoka Y; Fukaya Y; Isu A; Hisabori T
    Biochim Biophys Acta Bioenerg; 2018 May; 1859(5):319-325. PubMed ID: 29470949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of the αβ conformational change in F1-ATPase after ATP hydrolysis: free-energy simulations.
    Ito Y; Ikeguchi M
    Biophys J; 2015 Jan; 108(1):85-97. PubMed ID: 25564855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase.
    Yasuda R; Noji H; Yoshida M; Kinosita K; Itoh H
    Nature; 2001 Apr; 410(6831):898-904. PubMed ID: 11309608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation.
    Shimabukuro K; Yasuda R; Muneyuki E; Hara KY; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14731-6. PubMed ID: 14657340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the temperature-sensitive reaction of F1-ATPase by using single-molecule manipulation.
    Watanabe R; Noji H
    Sci Rep; 2014 May; 4():4962. PubMed ID: 24825532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Torque generation and utilization in motor enzyme F0F1-ATP synthase: half-torque F1 with short-sized pushrod helix and reduced ATP Synthesis by half-torque F0F1.
    Usukura E; Suzuki T; Furuike S; Soga N; Saita E; Hisabori T; Kinosita K; Yoshida M
    J Biol Chem; 2012 Jan; 287(3):1884-91. PubMed ID: 22128167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar.
    Sakaki N; Shimo-Kon R; Adachi K; Itoh H; Furuike S; Muneyuki E; Yoshida M; Kinosita K
    Biophys J; 2005 Mar; 88(3):2047-56. PubMed ID: 15626703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acceleration of the ATP-binding rate of F1-ATPase by forcible forward rotation.
    Iko Y; Tabata KV; Sakakihara S; Nakashima T; Noji H
    FEBS Lett; 2009 Oct; 583(19):3187-91. PubMed ID: 19733568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluctuation theorem applied to F1-ATPase.
    Hayashi K; Ueno H; Iino R; Noji H
    Phys Rev Lett; 2010 May; 104(21):218103. PubMed ID: 20867140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissecting the role of the γ-subunit in the rotary-chemical coupling and torque generation of F1-ATPase.
    Mukherjee S; Warshel A
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2746-51. PubMed ID: 25730883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How Fo-ATPase generates rotary torque.
    Oster G; Wang H; Grabe M
    Philos Trans R Soc Lond B Biol Sci; 2000 Apr; 355(1396):523-8. PubMed ID: 10836505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of the conformational change of the F1-ATPase β subunit revealed by free energy simulations.
    Ito Y; Oroguchi T; Ikeguchi M
    J Am Chem Soc; 2011 Mar; 133(10):3372-80. PubMed ID: 21341660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of external torque on the ATP-driven rotation of F1-ATPase.
    Watanabe-Nakayama T; Toyabe S; Kudo S; Sugiyama S; Yoshida M; Muneyuki E
    Biochem Biophys Res Commun; 2008 Feb; 366(4):951-7. PubMed ID: 18083117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel insights into the chemical mechanism of ATP synthase. Evidence that in the transition state the gamma-phosphate of ATP is near the conserved alanine within the P-loop of the beta-subunit.
    Ko YH; Bianchet M; Amzel LM; Pedersen PL
    J Biol Chem; 1997 Jul; 272(30):18875-81. PubMed ID: 9228065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase.
    Böckmann RA; Grubmüller H
    Nat Struct Biol; 2002 Mar; 9(3):198-202. PubMed ID: 11836535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.