These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25762329)

  • 21. Secondary nucleation in amyloid formation.
    Törnquist M; Michaels TCT; Sanagavarapu K; Yang X; Meisl G; Cohen SIA; Knowles TPJ; Linse S
    Chem Commun (Camb); 2018 Aug; 54(63):8667-8684. PubMed ID: 29978862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An equilibrium model for linear and closed-loop amyloid fibril formation.
    Yang S; Griffin MD; Binger KJ; Schuck P; Howlett GJ
    J Mol Biol; 2012 Aug; 421(2-3):364-77. PubMed ID: 22370559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amyloid fibril polymorphism is under kinetic control.
    Pellarin R; Schuetz P; Guarnera E; Caflisch A
    J Am Chem Soc; 2010 Oct; 132(42):14960-70. PubMed ID: 20923147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly.
    Xue WF; Homans SW; Radford SE
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8926-31. PubMed ID: 18579777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of lysophosphatidic acid-induced amyloid fibril formation of beta(2)-microglobulin in vitro under physiological conditions.
    Pál-Gábor H; Gombos L; Micsonai A; Kovács E; Petrik E; Kovács J; Gráf L; Fidy J; Naiki H; Goto Y; Liliom K; Kardos J
    Biochemistry; 2009 Jun; 48(24):5689-99. PubMed ID: 19432419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Secondary nucleation and accessible surface in insulin amyloid fibril formation.
    Foderà V; Librizzi F; Groenning M; van de Weert M; Leone M
    J Phys Chem B; 2008 Mar; 112(12):3853-8. PubMed ID: 18311965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways.
    Griffin MD; Mok ML; Wilson LM; Pham CL; Waddington LJ; Perugini MA; Howlett GJ
    J Mol Biol; 2008 Jan; 375(1):240-56. PubMed ID: 18005990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational assembly of polymorphic amyloid fibrils reveals stable aggregates.
    Smaoui MR; Poitevin F; Delarue M; Koehl P; Orland H; Waldispühl J
    Biophys J; 2013 Feb; 104(3):683-93. PubMed ID: 23442919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chiral Selectivity of Secondary Nucleation in Amyloid Fibril Propagation.
    Törnquist M; Linse S
    Angew Chem Int Ed Engl; 2021 Nov; 60(45):24008-24011. PubMed ID: 34494356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cooperative hydrogen bonding in amyloid formation.
    Tsemekhman K; Goldschmidt L; Eisenberg D; Baker D
    Protein Sci; 2007 Apr; 16(4):761-4. PubMed ID: 17327394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Effect of Milk Constituents and Crowding Agents on Amyloid Fibril Formation by κ-Casein.
    Liu J; Dehle FC; Liu Y; Bahraminejad E; Ecroyd H; Thorn DC; Carver JA
    J Agric Food Chem; 2016 Feb; 64(6):1335-43. PubMed ID: 26807595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulations of nucleation and elongation of amyloid fibrils.
    Zhang J; Muthukumar M
    J Chem Phys; 2009 Jan; 130(3):035102. PubMed ID: 19173542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-affinity amphipathic modulators of amyloid fibril nucleation and elongation.
    Ryan TM; Griffin MD; Teoh CL; Ooi J; Howlett GJ
    J Mol Biol; 2011 Feb; 406(3):416-29. PubMed ID: 21185302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel mechanistic insight into the molecular basis of amyloid polymorphism and secondary nucleation during amyloid formation.
    Jeong JS; Ansaloni A; Mezzenga R; Lashuel HA; Dietler G
    J Mol Biol; 2013 May; 425(10):1765-81. PubMed ID: 23415897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defining the pathway of worm-like amyloid fibril formation by the mouse prion protein by delineation of the productive and unproductive oligomerization reactions.
    Jain S; Udgaonkar JB
    Biochemistry; 2011 Feb; 50(7):1153-61. PubMed ID: 21214263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asymmetric amyloid fibril elongation: a new perspective on a symmetric world.
    Heldt CL; Zhang S; Belfort G
    Proteins; 2011 Jan; 79(1):92-8. PubMed ID: 20941707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.