These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 25762553)
1. Unraveling determinants of transcription factor binding outside the core binding site. Levo M; Zalckvar E; Sharon E; Dantas Machado AC; Kalma Y; Lotam-Pompan M; Weinberger A; Yakhini Z; Rohs R; Segal E Genome Res; 2015 Jul; 25(7):1018-29. PubMed ID: 25762553 [TBL] [Abstract][Full Text] [Related]
2. Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays. Levo M; Avnit-Sagi T; Lotan-Pompan M; Kalma Y; Weinberger A; Yakhini Z; Segal E Mol Cell; 2017 Feb; 65(4):604-617.e6. PubMed ID: 28212748 [TBL] [Abstract][Full Text] [Related]
3. Identifying cooperative transcription factors in yeast using multiple data sources. Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499 [TBL] [Abstract][Full Text] [Related]
4. A widespread role of the motif environment in transcription factor binding across diverse protein families. Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164 [TBL] [Abstract][Full Text] [Related]
5. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes. Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121 [TBL] [Abstract][Full Text] [Related]
6. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060 [TBL] [Abstract][Full Text] [Related]
7. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast. Tsai ZT; Shiu SH; Tsai HK PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518 [TBL] [Abstract][Full Text] [Related]
8. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model. Oliver P; Peralta-Gil M; Tabche ML; Merino E BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672 [TBL] [Abstract][Full Text] [Related]
9. Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm. Zhu Z; Pilpel Y; Church GM J Mol Biol; 2002 Apr; 318(1):71-81. PubMed ID: 12054769 [TBL] [Abstract][Full Text] [Related]
10. Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae. Morris RT; O'Connor TR; Wyrick JJ Bioinformatics; 2010 Jan; 26(2):168-74. PubMed ID: 19959498 [TBL] [Abstract][Full Text] [Related]
11. Quantitative modeling of transcription factor binding specificities using DNA shape. Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide analysis of transcription factor binding sites and their characteristic DNA structures. Dai Z; Guo D; Dai X; Xiong Y BMC Genomics; 2015; 16 Suppl 3(Suppl 3):S8. PubMed ID: 25708259 [TBL] [Abstract][Full Text] [Related]
13. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast. Wu WS; Lai FJ BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776 [TBL] [Abstract][Full Text] [Related]
14. Nucleosomal context of binding sites influences transcription factor binding affinity and gene regulation. Dai Z; Dai X; Xiang Q; Feng J Genomics Proteomics Bioinformatics; 2009 Dec; 7(4):155-62. PubMed ID: 20172488 [TBL] [Abstract][Full Text] [Related]
15. Computational identification of combinatorial regulation and transcription factor binding sites. Ryu T; Kim Y; Kim DW; Lee D Biotechnol Bioeng; 2007 Aug; 97(6):1594-602. PubMed ID: 17252601 [TBL] [Abstract][Full Text] [Related]
16. Identifying combinatorial regulation of transcription factors and binding motifs. Kato M; Hata N; Banerjee N; Futcher B; Zhang MQ Genome Biol; 2004; 5(8):R56. PubMed ID: 15287978 [TBL] [Abstract][Full Text] [Related]
17. A computational "genome walk" technique to identify regulatory interactions in gene networks. Wagner A Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188 [TBL] [Abstract][Full Text] [Related]
18. Genome-scale identification of nucleosome positions in S. cerevisiae. Yuan GC; Liu YJ; Dion MF; Slack MD; Wu LF; Altschuler SJ; Rando OJ Science; 2005 Jul; 309(5734):626-30. PubMed ID: 15961632 [TBL] [Abstract][Full Text] [Related]
19. Systematic interrogation of human promoters. Weingarten-Gabbay S; Nir R; Lubliner S; Sharon E; Kalma Y; Weinberger A; Segal E Genome Res; 2019 Feb; 29(2):171-183. PubMed ID: 30622120 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive, high-resolution binding energy landscapes reveal context dependencies of transcription factor binding. Le DD; Shimko TC; Aditham AK; Keys AM; Longwell SA; Orenstein Y; Fordyce PM Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3702-E3711. PubMed ID: 29588420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]