These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25762672)

  • 1. Neural substrates underlying the passive observation and active control of translational egomotion.
    Huang RS; Chen CF; Sereno MI
    J Neurosci; 2015 Mar; 35(10):4258-67. PubMed ID: 25762672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation.
    Cardin V; Smith AT
    Cereb Cortex; 2010 Aug; 20(8):1964-73. PubMed ID: 20034998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Egomotion-related visual areas respond to active leg movements.
    Serra C; Galletti C; Di Marco S; Fattori P; Galati G; Sulpizio V; Pitzalis S
    Hum Brain Mapp; 2019 Aug; 40(11):3174-3191. PubMed ID: 30924264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selectivity to translational egomotion in human brain motion areas.
    Pitzalis S; Sdoia S; Bultrini A; Committeri G; Di Russo F; Fattori P; Galletti C; Galati G
    PLoS One; 2013; 8(4):e60241. PubMed ID: 23577096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a Causal Contribution of Macaque Vestibular, But Not Intraparietal, Cortex to Heading Perception.
    Chen A; Gu Y; Liu S; DeAngelis GC; Angelaki DE
    J Neurosci; 2016 Mar; 36(13):3789-98. PubMed ID: 27030763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cortical regions activated by wide-field visual motion: an H2(15)O PET study.
    Cheng K; Fujita H; Kanno I; Miura S; Tanaka K
    J Neurophysiol; 1995 Jul; 74(1):413-27. PubMed ID: 7472342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A common neural substrate for processing scenes and egomotion-compatible visual motion.
    Sulpizio V; Galati G; Fattori P; Galletti C; Pitzalis S
    Brain Struct Funct; 2020 Sep; 225(7):2091-2110. PubMed ID: 32647918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow.
    Chen A; DeAngelis GC; Angelaki DE
    J Neurosci; 2010 Feb; 30(8):3022-42. PubMed ID: 20181599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moving and being moved: differences in cerebral activation during recollection of whole-body motion.
    Wutte MG; Glasauer S; Jahn K; Flanagin VL
    Behav Brain Res; 2012 Feb; 227(1):21-9. PubMed ID: 22040905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex.
    Cottereau BR; Smith AT; Rima S; Fize D; Héjja-Brichard Y; Renaud L; Lejards C; Vayssière N; Trotter Y; Durand JB
    Cereb Cortex; 2017 Jan; 27(1):330-343. PubMed ID: 28108489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects.
    Frank SM; Sun L; Forster L; Tse PU; Greenlee MW
    J Neurosci; 2016 Dec; 36(50):12720-12728. PubMed ID: 27821579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural sensitivity to translational self- and object-motion velocities.
    Sulpizio V; von Gal A; Galati G; Fattori P; Galletti C; Pitzalis S
    Hum Brain Mapp; 2024 Jan; 45(1):e26571. PubMed ID: 38224544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tactile-visual integration in the posterior parietal cortex: a functional magnetic resonance imaging study.
    Nakashita S; Saito DN; Kochiyama T; Honda M; Tanabe HC; Sadato N
    Brain Res Bull; 2008 Mar; 75(5):513-25. PubMed ID: 18355627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual-vestibular processing in the human Sylvian fissure.
    Frank SM; Wirth AM; Greenlee MW
    J Neurophysiol; 2016 Aug; 116(2):263-71. PubMed ID: 27075535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.
    Kimmig H; Ohlendorf S; Speck O; Sprenger A; Rutschmann RM; Haller S; Greenlee MW
    Neuropsychologia; 2008; 46(8):2203-13. PubMed ID: 18394660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of Heading and Choice-Related Signals in the Parieto-Insular Vestibular Cortex of Macaque Monkeys.
    Chen A; Zeng F; DeAngelis GC; Angelaki DE
    J Neurosci; 2021 Apr; 41(14):3254-3265. PubMed ID: 33622780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing of coherent visual motion in topographically organized visual areas in human cerebral cortex.
    Helfrich RF; Becker HG; Haarmeier T
    Brain Topogr; 2013 Apr; 26(2):247-63. PubMed ID: 22526896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of cortical networks mediating object motion detection by moving observers.
    Calabro FJ; Vaina LM
    Exp Brain Res; 2012 Aug; 221(2):177-89. PubMed ID: 22811215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optic flow selectivity in the macaque parieto-occipital sulcus.
    Pitzalis S; Hadj-Bouziane F; Dal Bò G; Guedj C; Strappini F; Meunier M; Farnè A; Fattori P; Galletti C
    Brain Struct Funct; 2021 Dec; 226(9):2911-2930. PubMed ID: 34043075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. White Matter Connectivity of the Visual-Vestibular Cortex Examined by Diffusion-Weighted Imaging.
    Wirth AM; Frank SM; Greenlee MW; Beer AL
    Brain Connect; 2018 May; 8(4):235-244. PubMed ID: 29571264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.