BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 25762678)

  • 41. Reciprocal Inhibitory Glomerular Circuits Contribute to Excitation-Inhibition Balance in the Mouse Olfactory Bulb.
    Shao Z; Liu S; Zhou F; Puche AC; Shipley MT
    eNeuro; 2019; 6(3):. PubMed ID: 31147391
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activation of group I metabotropic glutamate receptors on main olfactory bulb granule cells and periglomerular cells enhances synaptic inhibition of mitral cells.
    Dong HW; Hayar A; Ennis M
    J Neurosci; 2007 May; 27(21):5654-63. PubMed ID: 17522310
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike.
    Egger V; Svoboda K; Mainen ZF
    J Neurosci; 2005 Apr; 25(14):3521-30. PubMed ID: 15814782
    [TBL] [Abstract][Full Text] [Related]  

  • 44. GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb.
    Wellis DP; Kauer JS
    J Physiol; 1993 Sep; 469():315-39. PubMed ID: 7903696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb.
    Short SM; Morse TM; McTavish TS; Shepherd GM; Verhagen JV
    PLoS One; 2016; 11(12):e0168356. PubMed ID: 28005923
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb.
    Pressler RT; Strowbridge BW
    Neuron; 2006 Mar; 49(6):889-904. PubMed ID: 16543136
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Parallel processing of afferent olfactory sensory information.
    Vaaga CE; Westbrook GL
    J Physiol; 2016 Nov; 594(22):6715-6732. PubMed ID: 27377344
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Olfactory bulb glomeruli: external tufted cells intrinsically burst at theta frequency and are entrained by patterned olfactory input.
    Hayar A; Karnup S; Shipley MT; Ennis M
    J Neurosci; 2004 Feb; 24(5):1190-9. PubMed ID: 14762137
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tbr2 deficiency in mitral and tufted cells disrupts excitatory-inhibitory balance of neural circuitry in the mouse olfactory bulb.
    Mizuguchi R; Naritsuka H; Mori K; Mao CA; Klein WH; Yoshihara Y
    J Neurosci; 2012 Jun; 32(26):8831-44. PubMed ID: 22745484
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatio-Temporal Characteristics of Inhibition Mapped by Optical Stimulation in Mouse Olfactory Bulb.
    Lehmann A; D'Errico A; Vogel M; Spors H
    Front Neural Circuits; 2016; 10():15. PubMed ID: 27047340
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Olfactory bulb external tufted cells are synchronized by multiple intraglomerular mechanisms.
    Hayar A; Shipley MT; Ennis M
    J Neurosci; 2005 Sep; 25(36):8197-208. PubMed ID: 16148227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cholecystokinin selectively activates short axon cells to enhance inhibition of olfactory bulb output neurons.
    Liu X; Liu S
    J Physiol; 2018 Jun; 596(11):2185-2207. PubMed ID: 29572837
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neurotransmitter regulation rather than cell-intrinsic properties shapes the high-pass filtering properties of olfactory bulb glomeruli.
    Zak JD; Schoppa NE
    J Physiol; 2022 Jan; 600(2):393-417. PubMed ID: 34891217
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse.
    Dhawale AK; Hagiwara A; Bhalla US; Murthy VN; Albeanu DF
    Nat Neurosci; 2010 Nov; 13(11):1404-12. PubMed ID: 20953197
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabotropic glutamate receptors promote disinhibition of olfactory bulb glomeruli that scales with input strength.
    Zak JD; Whitesell JD; Schoppa NE
    J Neurophysiol; 2015 Mar; 113(6):1907-20. PubMed ID: 25552635
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Presynaptic muscarinic receptors enhance glutamate release at the mitral/tufted to granule cell dendrodendritic synapse in the rat main olfactory bulb.
    Ghatpande AS; Gelperin A
    J Neurophysiol; 2009 Apr; 101(4):2052-61. PubMed ID: 19225175
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Olfactory nerve stimulation-induced calcium signaling in the mitral cell distal dendritic tuft.
    Yuan Q; Knöpfel T
    J Neurophysiol; 2006 Apr; 95(4):2417-26. PubMed ID: 16319202
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glomerulus-specific, long-latency activity in the olfactory bulb granule cell network.
    Kapoor V; Urban NN
    J Neurosci; 2006 Nov; 26(45):11709-19. PubMed ID: 17093092
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb.
    Matsumoto H; Kashiwadani H; Nagao H; Aiba A; Mori K
    J Neurophysiol; 2009 Apr; 101(4):1890-900. PubMed ID: 19164106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells.
    Ennis M; Zhu M; Heinbockel T; Hayar A
    J Neurophysiol; 2006 Apr; 95(4):2233-41. PubMed ID: 16394070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.