BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 25762678)

  • 61. Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb--IV. Intraglomerular synapses of tyrosine hydroxylase-immunoreactive neurons.
    Toida K; Kosaka K; Aika Y; Kosaka T
    Neuroscience; 2000; 101(1):11-7. PubMed ID: 11068132
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular identity of periglomerular and short axon cells.
    Kiyokage E; Pan YZ; Shao Z; Kobayashi K; Szabo G; Yanagawa Y; Obata K; Okano H; Toida K; Puche AC; Shipley MT
    J Neurosci; 2010 Jan; 30(3):1185-96. PubMed ID: 20089927
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Activation of Granule Cell Interneurons by Two Divergent Local Circuit Pathways in the Rat Olfactory Bulb.
    Pressler RT; Strowbridge BW
    J Neurosci; 2020 Dec; 40(50):9701-9714. PubMed ID: 33234611
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interglomerular lateral inhibition targeted on external tufted cells in the olfactory bulb.
    Whitesell JD; Sorensen KA; Jarvie BC; Hentges ST; Schoppa NE
    J Neurosci; 2013 Jan; 33(4):1552-63. PubMed ID: 23345229
    [TBL] [Abstract][Full Text] [Related]  

  • 65. NADPH-diaphorase activity in the olfactory system of the hamster and rat.
    Davis BJ
    J Comp Neurol; 1991 Dec; 314(3):493-511. PubMed ID: 1687689
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Intraglomerular dendritic link connected by gap junctions and chemical synapses in the mouse main olfactory bulb: electron microscopic serial section analyses.
    Kosaka T; Kosaka K
    Neuroscience; 2005; 131(3):611-25. PubMed ID: 15730867
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cannabinoid receptor-mediated regulation of neuronal activity and signaling in glomeruli of the main olfactory bulb.
    Wang ZJ; Sun L; Heinbockel T
    J Neurosci; 2012 Jun; 32(25):8475-9. PubMed ID: 22723687
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb.
    Ma J; Lowe G
    Neuroscience; 2007 Feb; 144(3):1094-108. PubMed ID: 17156930
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Long-lasting depolarizations in mitral cells of the rat olfactory bulb.
    Carlson GC; Shipley MT; Keller A
    J Neurosci; 2000 Mar; 20(5):2011-21. PubMed ID: 10684902
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells.
    Liu S; Plachez C; Shao Z; Puche A; Shipley MT
    J Neurosci; 2013 Feb; 33(7):2916-26. PubMed ID: 23407950
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Co-transmission of dopamine and GABA in periglomerular cells.
    Maher BJ; Westbrook GL
    J Neurophysiol; 2008 Mar; 99(3):1559-64. PubMed ID: 18216231
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuitry.
    Tyan L; Chamberland S; Magnin E; Camiré O; Francavilla R; David LS; Deisseroth K; Topolnik L
    J Neurosci; 2014 Mar; 34(13):4534-47. PubMed ID: 24671999
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Respiration drives network activity and modulates synaptic and circuit processing of lateral inhibition in the olfactory bulb.
    Phillips ME; Sachdev RN; Willhite DC; Shepherd GM
    J Neurosci; 2012 Jan; 32(1):85-98. PubMed ID: 22219272
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Activity of the principal cells of the olfactory bulb promotes a structural dynamic on the distal dendrites of immature adult-born granule cells via activation of NMDA receptors.
    Breton-Provencher V; Coté D; Saghatelyan A
    J Neurosci; 2014 Jan; 34(5):1748-59. PubMed ID: 24478357
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Inhibition of backpropagating action potentials in mitral cell secondary dendrites.
    Lowe G
    J Neurophysiol; 2002 Jul; 88(1):64-85. PubMed ID: 12091533
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Serotonin increases synaptic activity in olfactory bulb glomeruli.
    Brill J; Shao Z; Puche AC; Wachowiak M; Shipley MT
    J Neurophysiol; 2016 Mar; 115(3):1208-19. PubMed ID: 26655822
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Loss of olfactory cell adhesion molecule reduces the synchrony of mitral cell activity in olfactory glomeruli.
    Borisovska M; McGinley MJ; Bensen A; Westbrook GL
    J Physiol; 2011 Apr; 589(Pt 8):1927-41. PubMed ID: 21486802
    [TBL] [Abstract][Full Text] [Related]  

  • 78. GABA(B) receptor-mediated inhibition of mitral/tufted cell activity in the rat olfactory bulb: a whole-cell patch-clamp study in vitro.
    Palouzier-Paulignan B; Duchamp-Viret P; Hardy AB; Duchamp A
    Neuroscience; 2002; 111(2):241-50. PubMed ID: 11983311
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Metabotropic glutamate receptors in the main olfactory bulb drive granule cell-mediated inhibition.
    Heinbockel T; Laaris N; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):858-70. PubMed ID: 17093122
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Neural coding by two classes of principal cells in the mouse piriform cortex.
    Suzuki N; Bekkers JM
    J Neurosci; 2006 Nov; 26(46):11938-47. PubMed ID: 17108168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.