BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 25762985)

  • 1. Association of fungal secondary metabolism and sclerotial biology.
    Calvo AM; Cary JW
    Front Microbiol; 2015; 6():62. PubMed ID: 25762985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production.
    Chang PK; Scharfenstein LL; Li P; Ehrlich KC
    Fungal Genet Biol; 2013; 58-59():71-9. PubMed ID: 23994319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus.
    Kale SP; Milde L; Trapp MK; Frisvad JC; Keller NP; Bok JW
    Fungal Genet Biol; 2008 Oct; 45(10):1422-9. PubMed ID: 18667168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus.
    Amaike S; Keller NP
    Eukaryot Cell; 2009 Jul; 8(7):1051-60. PubMed ID: 19411623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome Analysis of Aspergillus flavus Reveals veA-Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster.
    Cary JW; Han Z; Yin Y; Lohmar JM; Shantappa S; Harris-Coward PY; Mack B; Ehrlich KC; Wei Q; Arroyo-Manzanares N; Uka V; Vanhaecke L; Bhatnagar D; Yu J; Nierman WC; Johns MA; Sorensen D; Shen H; De Saeger S; Diana Di Mavungu J; Calvo AM
    Eukaryot Cell; 2015 Oct; 14(10):983-97. PubMed ID: 26209694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Aspergillus flavus fluP-associated metabolite promotes sclerotial production.
    Chang PK; Scharfenstein LL; Ehrlich KC; Diana Di Mavungu J
    Fungal Biol; 2016 Oct; 120(10):1258-68. PubMed ID: 27647242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. veA is required for toxin and sclerotial production in Aspergillus parasiticus.
    Calvo AM; Bok J; Brooks W; Keller NP
    Appl Environ Microbiol; 2004 Aug; 70(8):4733-9. PubMed ID: 15294809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apc.LaeA and Apc.VeA of the velvet complex govern secondary metabolism and morphological development in the echinocandin-producing fungus Aspergillus pachycristatus.
    Lan N; Yue Q; An Z; Bills GF
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):155-168. PubMed ID: 31758414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cellular Fusion Cascade Regulated by LaeA Is Required for Sclerotial Development in
    Zhao X; Spraker JE; Bok JW; Velk T; He ZM; Keller NP
    Front Microbiol; 2017; 8():1925. PubMed ID: 29051754
    [No Abstract]   [Full Text] [Related]  

  • 10. Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment.
    Cary JW; Harris-Coward PY; Ehrlich KC; Di Mavungu JD; Malysheva SV; De Saeger S; Dowd PF; Shantappa S; Martens SL; Calvo AM
    Fungal Genet Biol; 2014 Mar; 64():25-35. PubMed ID: 24412484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism.
    Bayram O; Krappmann S; Ni M; Bok JW; Helmstaedt K; Valerius O; Braus-Stromeyer S; Kwon NJ; Keller NP; Yu JH; Braus GH
    Science; 2008 Jun; 320(5882):1504-6. PubMed ID: 18556559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Gene Regulatory Networks of the Global Regulators VeA and LaeA in Aspergillus nidulans.
    Moon H; Lee MK; Bok I; Bok JW; Keller NP; Yu JH
    Microbiol Spectr; 2023 Mar; 11(2):e0016623. PubMed ID: 36920196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Kinetochore Protein Spc105, a Novel Interaction Partner of LaeA, Regulates Development and Secondary Metabolism in
    Zhi QQ; He L; Li JY; Li J; Wang ZL; He GY; He ZM
    Front Microbiol; 2019; 10():1881. PubMed ID: 31456789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics.
    Cary JW; OBrian GR; Nielsen DM; Nierman W; Harris-Coward P; Yu J; Bhatnagar D; Cleveland TE; Payne GA; Calvo AM
    Appl Microbiol Biotechnol; 2007 Oct; 76(5):1107-18. PubMed ID: 17646985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. rtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in Aspergillus flavus.
    Lohmar JM; Harris-Coward PY; Cary JW; Dhingra S; Calvo AM
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):5029-41. PubMed ID: 27020290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery.
    Chang PK; Scharfenstein LL; Mack B; Yu J; Ehrlich KC
    Fungal Genet Biol; 2014 Jul; 68():39-47. PubMed ID: 24780887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites.
    Chang PK; Scharfenstein LL; Li RW; Arroyo-Manzanares N; De Saeger S; Diana Di Mavungu J
    Fungal Genet Biol; 2017 Jul; 104():29-37. PubMed ID: 28442441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins.
    Bayram O; Braus GH
    FEMS Microbiol Rev; 2012 Jan; 36(1):1-24. PubMed ID: 21658084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity.
    Sarikaya Bayram O; Bayram O; Valerius O; Park HS; Irniger S; Gerke J; Ni M; Han KH; Yu JH; Braus GH
    PLoS Genet; 2010 Dec; 6(12):e1001226. PubMed ID: 21152013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism.
    Roze LV; Chanda A; Laivenieks M; Beaudry RM; Artymovich KA; Koptina AV; Awad DW; Valeeva D; Jones AD; Linz JE
    BMC Biochem; 2010 Aug; 11():33. PubMed ID: 20735852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.