BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25763044)

  • 1. Treatment with some anti-inflammatory drugs reduces germ tube formation in Candida albicans strains.
    Rusu E; Radu-Popescu M; Pelinescu D; Vassu T
    Braz J Microbiol; 2014; 45(4):1379-83. PubMed ID: 25763044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of diclofenac sodium in the dimorphic transition in Candida albicans.
    Ghalehnoo ZR; Rashki A; Najimi M; Dominguez A
    Microb Pathog; 2010; 48(3-4):110-5. PubMed ID: 20026399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans.
    Alem MA; Douglas LJ
    Antimicrob Agents Chemother; 2004 Jan; 48(1):41-7. PubMed ID: 14693516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclooxygenase inhibitors reduce biofilm formation and yeast-hypha conversion of fluconazole resistant Candida albicans.
    Abdelmegeed E; Shaaban MI
    J Microbiol; 2013 Oct; 51(5):598-604. PubMed ID: 24037655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal activity and influence of propolis against germ tube formation as a critical virulence attribute by clinical isolates of Candida albicans.
    Haghdoost NS; Salehi TZ; Khosravi A; Sharifzadeh A
    J Mycol Med; 2016 Dec; 26(4):298-305. PubMed ID: 27789229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer drugs inhibit morphogenesis in the human fungal pathogen, Candida albicans.
    Routh MM; Chauhan NM; Karuppayil SM
    Braz J Microbiol; 2013; 44(3):855-9. PubMed ID: 24516452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis.
    Bar-Yosef H; Vivanco Gonzalez N; Ben-Aroya S; Kron SJ; Kornitzer D
    Sci Rep; 2017 Jul; 7(1):5692. PubMed ID: 28720834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of inhibitors of yeast-to-hyphae transition in Candida albicans by a reporter screening assay.
    Heintz-Buschart A; Eickhoff H; Hohn E; Bilitewski U
    J Biotechnol; 2013 Mar; 164(1):137-42. PubMed ID: 23262131
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Çolak A; Ikeh MAC; Nobile CJ; Baykara MZ
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33148826
    [No Abstract]   [Full Text] [Related]  

  • 10. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.
    Vediyappan G; Dumontet V; Pelissier F; d'Enfert C
    PLoS One; 2013; 8(9):e74189. PubMed ID: 24040201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitors of cellular signalling are cytotoxic or block the budded-to-hyphal transition in the pathogenic yeast Candida albicans.
    Toenjes KA; Stark BC; Brooks KM; Johnson DI
    J Med Microbiol; 2009 Jun; 58(Pt 6):779-790. PubMed ID: 19429755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin.
    Messier C; Epifano F; Genovese S; Grenier D
    Phytomedicine; 2011 Mar; 18(5):380-3. PubMed ID: 21353508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Candida albicans Ddr48 protein is essential for filamentation, stress response, and confers partial antifungal drug resistance.
    Dib L; Hayek P; Sadek H; Beyrouthy B; Khalaf RA
    Med Sci Monit; 2008 Jun; 14(6):BR113-121. PubMed ID: 18509269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Candida albicans biofilm and hyphae formation by biocompatible oligomers.
    Lee JH; Kim YG; Lee J
    Lett Appl Microbiol; 2018 Aug; 67(2):123-129. PubMed ID: 29885256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans.
    Pointer BR; Boyer MP; Schmidt M
    Yeast; 2015 Apr; 32(4):389-98. PubMed ID: 25612315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostaglandin production during growth of Candida albicans biofilms.
    Alem MA; Douglas LJ
    J Med Microbiol; 2005 Nov; 54(Pt 11):1001-1005. PubMed ID: 16192429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation.
    Romo JA; Zhang H; Cai H; Kadosh D; Koehler JR; Saville SP; Wang Y; Lopez-Ribot JL
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31511371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive assay for antifungal activity of glucan synthase inhibitors that uses germ tube formation in Candida albicans as an end point.
    Brayman TG; Wilks JW
    Antimicrob Agents Chemother; 2003 Oct; 47(10):3305-10. PubMed ID: 14506045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inductions of germ tube and hyphal formations are controlled by mRNA synthesis inhibitor in Candida albicans.
    Imanishi Y; Yokoyama K; Nishimura K
    Nihon Ishinkin Gakkai Zasshi; 2004; 45(2):113-9. PubMed ID: 15118669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis.
    Watanabe NA; Miyazaki M; Horii T; Sagane K; Tsukahara K; Hata K
    Antimicrob Agents Chemother; 2012 Feb; 56(2):960-71. PubMed ID: 22143530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.