BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25763103)

  • 1. Untreated Chlorella homosphaera biomass allows for high rates of cell wall glucan enzymatic hydrolysis when using exoglucanase-free cellulases.
    Rodrigues MA; Teixeira RS; Ferreira-Leitão VS; da Silva Bon EP
    Biotechnol Biofuels; 2015; 8():25. PubMed ID: 25763103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass.
    Inoue H; Decker SR; Taylor LE; Yano S; Sawayama S
    Biotechnol Biofuels; 2014; 7(1):151. PubMed ID: 25342974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials.
    Fujii T; Fang X; Inoue H; Murakami K; Sawayama S
    Biotechnol Biofuels; 2009 Oct; 2(1):24. PubMed ID: 19796378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-solid-state fermentation of Eicchornia crassipes biomass as lignocellulosic biopolymer for cellulase and 3-glucosidase production by cocultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC164.
    Kumar R; Singh RP
    Appl Biochem Biotechnol; 2001; 96(1-3):71-82. PubMed ID: 11783902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.
    Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR
    Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis of cellulose using ternary mixtures of purified cellulases.
    Baker JO; Ehrman CI; Adney WS; Thomas SR; Himmel ME
    Appl Biochem Biotechnol; 1998; 70-72():395-403. PubMed ID: 9627391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of Corn Stover by Talaromyces cellulolyticus Enzymes: Evaluation of the Residual Enzymes Activities Through the Process.
    Liuzzi F; Mastrolitti S; De Bari I
    Appl Biochem Biotechnol; 2019 Jul; 188(3):690-705. PubMed ID: 30666516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of cellulolytic enzyme components through engineering
    Li YH; Zhang XY; Zhang F; Peng LC; Zhang DB; Kondo A; Bai FW; Zhao XQ
    Biotechnol Biofuels; 2018; 11():49. PubMed ID: 29483942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass.
    Meng QS; Liu CG; Zhao XQ; Bai FW
    J Biotechnol; 2018 Nov; 285():56-63. PubMed ID: 30194052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability.
    Fang H; Zhao R; Li C; Zhao C
    Microb Cell Fact; 2019 Jan; 18(1):9. PubMed ID: 30657063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose.
    Fitzpatrick J; Kricka W; James TC; Bond U
    J Appl Microbiol; 2014 Jul; 117(1):96-108. PubMed ID: 24666670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities.
    Xue X; Wu Y; Qin X; Ma R; Luo H; Su X; Yao B
    Microb Cell Fact; 2016 Jul; 15(1):122. PubMed ID: 27400964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production and partial characterization of cellulases and Xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass.
    Grigorevski-Lima AL; de Oliveira MM; do Nascimento RP; Bon EP; Coelho RR
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1373-85. PubMed ID: 23306885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C; Lin F; Li Y; Wei W; Wang H; Qin L; Zhou Z; Li B; Wu F; Chen Z
    Microb Cell Fact; 2016 Sep; 15(1):151. PubMed ID: 27585813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugarcane bagasse enzymatic hydrolysis: rheological data as criteria for impeller selection.
    Pereira LT; Pereira LT; Teixeira RS; Bon EP; Freitas SP
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):901-7. PubMed ID: 20844924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes.
    Medve J; Karlsson J; Lee D; Tjerneld F
    Biotechnol Bioeng; 1998 Sep; 59(5):621-34. PubMed ID: 10099380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of Aspergillus awamori β-glucosidase on commercial gelatin: An inexpensive and efficient process.
    Nishida VS; de Oliveira RF; Brugnari T; Correa RCG; Peralta RA; Castoldi R; de Souza CGM; Bracht A; Peralta RM
    Int J Biol Macromol; 2018 May; 111():1206-1213. PubMed ID: 29415412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative kinetic analysis of two fungal beta-glucosidases.
    Chauve M; Mathis H; Huc D; Casanave D; Monot F; Lopes Ferreira N
    Biotechnol Biofuels; 2010 Feb; 3(1):3. PubMed ID: 20181208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods.
    Ko JK; Ximenes E; Kim Y; Ladisch MR
    Biotechnol Bioeng; 2015 Mar; 112(3):447-56. PubMed ID: 25116138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.