These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25763178)

  • 1. Similarity-based search of model organism, disease and drug effect phenotypes.
    Hoehndorf R; Gruenberger M; Gkoutos GV; Schofield PN
    J Biomed Semantics; 2015; 6():6. PubMed ID: 25763178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating phenotype ontologies with PhenomeNET.
    Rodríguez-García MÁ; Gkoutos GV; Schofield PN; Hoehndorf R
    J Biomed Semantics; 2017 Dec; 8(1):58. PubMed ID: 29258588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PhenomeNET: a whole-phenome approach to disease gene discovery.
    Hoehndorf R; Schofield PN; Gkoutos GV
    Nucleic Acids Res; 2011 Oct; 39(18):e119. PubMed ID: 21737429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving disease gene prioritization by comparing the semantic similarity of phenotypes in mice with those of human diseases.
    Oellrich A; Hoehndorf R; Gkoutos GV; Rebholz-Schuhmann D
    PLoS One; 2012; 7(6):e38937. PubMed ID: 22719993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of model organism phenotypes to the computational identification of human disease genes.
    Alghamdi SM; Schofield PN; Hoehndorf R
    Dis Model Mech; 2022 Jul; 15(7):. PubMed ID: 35758016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking rare and common disease: mapping clinical disease-phenotypes to ontologies in therapeutic target validation.
    Sarntivijai S; Vasant D; Jupp S; Saunders G; Bento AP; Gonzalez D; Betts J; Hasan S; Koscielny G; Dunham I; Parkinson H; Malone J
    J Biomed Semantics; 2016; 7():8. PubMed ID: 27011785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking PharmGKB to phenotype studies and animal models of disease for drug repurposing.
    Hoehndorf R; Oellrich A; Rebholz-Schuhmann D; Schofield PN; Gkoutos GV
    Pac Symp Biocomput; 2012; ():388-99. PubMed ID: 22174294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhenPath: a tool for characterizing biological functions underlying different phenotypes.
    Babbi G; Martelli PL; Casadio R
    BMC Genomics; 2019 Jul; 20(Suppl 8):548. PubMed ID: 31307376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using the phenoscape knowledgebase to relate genetic perturbations to phenotypic evolution.
    Manda P; Balhoff JP; Lapp H; Mabee P; Vision TJ
    Genesis; 2015 Aug; 53(8):561-71. PubMed ID: 26220875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrative, translational approach to understanding rare and orphan genetically based diseases.
    Hoehndorf R; Schofield PN; Gkoutos GV
    Interface Focus; 2013 Apr; 3(2):20120055. PubMed ID: 23853703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontology-based semantic mapping of chemical toxicities.
    Wang RL; Edwards S; Ives C
    Toxicology; 2019 Jan; 412():89-100. PubMed ID: 30468866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact score distribution computation for ontological similarity searches.
    Schulz MH; Köhler S; Bauer S; Robinson PN
    BMC Bioinformatics; 2011 Nov; 12():441. PubMed ID: 22078312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases.
    Hoehndorf R; Schofield PN; Gkoutos GV
    Sci Rep; 2015 Jun; 5():10888. PubMed ID: 26051359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A drug target slim: using gene ontology and gene ontology annotations to navigate protein-ligand target space in ChEMBL.
    Mutowo P; Bento AP; Dedman N; Gaulton A; Hersey A; Lomax J; Overington JP
    J Biomed Semantics; 2016 Sep; 7(1):59. PubMed ID: 27678076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Effective Method to Measure Disease Similarity Using Gene and Phenotype Associations.
    Su S; Zhang L; Liu J
    Front Genet; 2019; 10():466. PubMed ID: 31164903
    [No Abstract]   [Full Text] [Related]  

  • 16. A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics.
    James RA; Campbell IM; Chen ES; Boone PM; Rao MA; Bainbridge MN; Lupski JR; Yang Y; Eng CM; Posey JE; Shaw CA
    Genome Med; 2016 Feb; 8(1):13. PubMed ID: 26838676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes.
    Alshahrani M; Hoehndorf R
    Bioinformatics; 2018 Sep; 34(17):i901-i907. PubMed ID: 30423077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontology-based cross-species integration and analysis of Saccharomyces cerevisiae phenotypes.
    Gkoutos GV; Hoehndorf R
    J Biomed Semantics; 2012 Sep; 3 Suppl 2(Suppl 2):S6. PubMed ID: 23046642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards similarity-based differential diagnostics for common diseases.
    Slater K; Karwath A; Williams JA; Russell S; Makepeace S; Carberry A; Hoehndorf R; Gkoutos GV
    Comput Biol Med; 2021 Jun; 133():104360. PubMed ID: 33836447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human phenotype ontology.
    Robinson PN; Mundlos S
    Clin Genet; 2010 Jun; 77(6):525-34. PubMed ID: 20412080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.