These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 25763499)
1. Proportion of phospholipids in the plasma membrane is an important factor in Al tolerance. Maejima E; Watanabe T Plant Signal Behav; 2014; 9(7):e29277. PubMed ID: 25763499 [TBL] [Abstract][Full Text] [Related]
2. Contribution of constitutive characteristics of lipids and phenolics in roots of tree species in Myrtales to aluminum tolerance. Maejima E; Osaki M; Wagatsuma T; Watanabe T Physiol Plant; 2017 May; 160(1):11-20. PubMed ID: 27800617 [TBL] [Abstract][Full Text] [Related]
3. Role of organic acids in aluminum accumulation and plant growth in Melastoma malabathricum. Watanabe T; Osaki M Tree Physiol; 2002 Aug; 22(11):785-92. PubMed ID: 12184982 [TBL] [Abstract][Full Text] [Related]
4. Role of exudation of organic acids and phosphate in aluminum tolerance of four tropical woody species. Nguyen NT; Nakabayashi K; Thompson J; Fujita K Tree Physiol; 2003 Oct; 23(15):1041-50. PubMed ID: 12975128 [TBL] [Abstract][Full Text] [Related]
5. Phosphorus deficiency enhances aluminum tolerance of rice (Oryza sativa) by changing the physicochemical characteristics of root plasma membranes and cell walls. Maejima E; Watanabe T; Osaki M; Wagatsuma T J Plant Physiol; 2014 Jan; 171(2):9-15. PubMed ID: 24331414 [TBL] [Abstract][Full Text] [Related]
6. Characterization of root mucilage from Melastoma malabathricum, with emphasis on its roles in aluminum accumulation. Watanabe T; Misawa S; Hiradate S; Osaki M New Phytol; 2008; 178(3):581-9. PubMed ID: 18373518 [TBL] [Abstract][Full Text] [Related]
7. Aluminum stress response in rice: effects on membrane lipid composition and expression of lipid biosynthesis genes. Huynh VB; Repellin A; Zuily-Fodil Y; Pham-Thi AT Physiol Plant; 2012 Nov; 146(3):272-84. PubMed ID: 22452575 [TBL] [Abstract][Full Text] [Related]
8. The beneficial effect of aluminium and the role of citrate in Al accumulation in Melastoma malabathricum. Watanabe T; Jansen S; Osaki M New Phytol; 2005 Mar; 165(3):773-80. PubMed ID: 15720688 [TBL] [Abstract][Full Text] [Related]
9. Al-Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils. Watanabe T; Jansen S; Osaki M Plant Cell Environ; 2006 Dec; 29(12):2124-32. PubMed ID: 17081246 [TBL] [Abstract][Full Text] [Related]
10. Controls on foliar aluminium accumulation among populations of the tropical shrub Melastoma malabathricum L. (Melastomataceae). Khairil M; Burslem DFRP Tree Physiol; 2018 Nov; 38(11):1752-1760. PubMed ID: 30137635 [TBL] [Abstract][Full Text] [Related]
11. A plasma membrane-localized small peptide is involved in rice aluminum tolerance. Xia J; Yamaji N; Ma JF Plant J; 2013 Oct; 76(2):345-55. PubMed ID: 23888867 [TBL] [Abstract][Full Text] [Related]
12. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species. Wagatsuma T; Khan MS; Watanabe T; Maejima E; Sekimoto H; Yokota T; Nakano T; Toyomasu T; Tawaraya K; Koyama H; Uemura M; Ishikawa S; Ikka T; Ishikawa A; Kawamura T; Murakami S; Ueki N; Umetsu A; Kannari T J Exp Bot; 2015 Feb; 66(3):907-18. PubMed ID: 25416794 [TBL] [Abstract][Full Text] [Related]
14. Relative abundance of Delta(5)-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice. Khan MS; Tawaraya K; Sekimoto H; Koyama H; Kobayashi Y; Murayama T; Chuba M; Kambayashi M; Shiono Y; Uemura M; Ishikawa S; Wagatsuma T Physiol Plant; 2009 Jan; 135(1):73-83. PubMed ID: 19121101 [TBL] [Abstract][Full Text] [Related]
15. Aluminium-phosphate interactions in the rhizosphere of two bean species: Phaseolus lunatus L. and Phaseolus vulgaris L. Mimmo T; Ghizzi M; Cesco S; Tomasi N; Pinton R; Puschenreiter M J Sci Food Agric; 2013 Dec; 93(15):3891-6. PubMed ID: 24037763 [TBL] [Abstract][Full Text] [Related]
16. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza Rufipogon Griff., into indica rice (Oryza sativa L.). Nguyen BD; Brar DS; Bui BC; Nguyen TV; Pham LN; Nguyen HT Theor Appl Genet; 2003 Feb; 106(4):583-93. PubMed ID: 12595985 [TBL] [Abstract][Full Text] [Related]
17. Nutritional characteristics of the leaves of native plants growing in adverse soils of humid tropical lowlands. Osaki M; Watanabe T; Ishizawa T; Nilnond C; Nuyim T; Shinano T; Urayama M; Tuah SJ Plant Foods Hum Nutr; 2003; 58(2):93-115. PubMed ID: 12906350 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Selamat SN; Abdullah SR; Idris M Int J Phytoremediation; 2014; 16(7-12):694-703. PubMed ID: 24933879 [TBL] [Abstract][Full Text] [Related]
19. Photosynthesis and photoassimilate transport during root hypoxia in Melaleuca cajuputi, a flood-tolerant species, and in Eucalyptus camaldulensis, a moderately flood-tolerant species. Kogawara S; Yamanoshita T; Norisada M; Masumori M; Kojima K Tree Physiol; 2006 Nov; 26(11):1413-23. PubMed ID: 16877326 [TBL] [Abstract][Full Text] [Related]
20. Aluminum-dependent dynamics of ion transport in Arabidopsis: specificity of low pH and aluminum responses. Bose J; Babourina O; Shabala S; Rengel Z Physiol Plant; 2010 Aug; 139(4):401-12. PubMed ID: 20444195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]