BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

789 related articles for article (PubMed ID: 25763566)

  • 1. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating.
    Cai Z; Palmai-Pallag T; Khuituan P; Mutolo MJ; Boinot C; Liu B; Scott-Ward TS; Callebaut I; Harris A; Sheppard DN
    J Physiol; 2015 Jun; 593(11):2427-46. PubMed ID: 25763566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential thermostability and response to cystic fibrosis transmembrane conductance regulator potentiators of human and mouse F508del-CFTR.
    Bose SJ; Bijvelds MJC; Wang Y; Liu J; Cai Z; Bot AGM; de Jonge HR; Sheppard DN
    Am J Physiol Lung Cell Mol Physiol; 2019 Jul; 317(1):L71-L86. PubMed ID: 30969810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl
    Chen JH; Xu W; Sheppard DN
    J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation.
    Meng X; Wang Y; Wang X; Wrennall JA; Rimington TL; Li H; Cai Z; Ford RC; Sheppard DN
    J Biol Chem; 2017 Mar; 292(9):3706-3719. PubMed ID: 28087700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran.
    Hughes LK; Ju M; Sheppard DN
    Mol Membr Biol; 2008 Sep; 25(6-7):528-38. PubMed ID: 18989824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFTR potentiators partially restore channel function to A561E-CFTR, a cystic fibrosis mutant with a similar mechanism of dysfunction as F508del-CFTR.
    Wang Y; Liu J; Loizidou A; Bugeja LA; Warner R; Hawley BR; Cai Z; Toye AM; Sheppard DN; Li H
    Br J Pharmacol; 2014 Oct; 171(19):4490-503. PubMed ID: 24902474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting species differences to understand the CFTR Cl- channel.
    Bose SJ; Scott-Ward TS; Cai Z; Sheppard DN
    Biochem Soc Trans; 2015 Oct; 43(5):975-82. PubMed ID: 26517912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    Yeh JT; Yu YC; Hwang TC
    J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects.
    Bompadre SG; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small molecule CFTR potentiator restores ATP-dependent channel gating to the cystic fibrosis mutant G551D-CFTR.
    Liu J; Berg AP; Wang Y; Jantarajit W; Sutcliffe KJ; Stevens EB; Cao L; Pregel MJ; Sheppard DN
    Br J Pharmacol; 2022 Apr; 179(7):1319-1337. PubMed ID: 34644413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revertant mutants modify, but do not rescue, the gating defect of the cystic fibrosis mutant G551D-CFTR.
    Xu Z; Pissarra LS; Farinha CM; Liu J; Cai Z; Thibodeau PH; Amaral MD; Sheppard DN
    J Physiol; 2014 May; 592(9):1931-47. PubMed ID: 24591578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.
    Cai Z; Taddei A; Sheppard DN
    J Biol Chem; 2006 Jan; 281(4):1970-7. PubMed ID: 16311240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation of the cystic fibrosis transmembrane conductance regulator Cl
    Wang Y; Cai Z; Gosling M; Sheppard DN
    Am J Physiol Lung Cell Mol Physiol; 2018 Nov; 315(5):L846-L857. PubMed ID: 30136610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial rescue of F508del-cystic fibrosis transmembrane conductance regulator channel gating with modest improvement of protein processing, but not stability, by a dual-acting small molecule.
    Liu J; Bihler H; Farinha CM; Awatade NT; Romão AM; Mercadante D; Cheng Y; Musisi I; Jantarajit W; Wang Y; Cai Z; Amaral MD; Mense M; Sheppard DN
    Br J Pharmacol; 2018 Apr; 175(7):1017-1038. PubMed ID: 29318594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms.
    Roxo-Rosa M; Xu Z; Schmidt A; Neto M; Cai Z; Soares CM; Sheppard DN; Amaral MD
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17891-6. PubMed ID: 17098864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new 9-alkyladenine-cyclic methylglyoxal diadduct activates wt- and F508del-cystic fibrosis transmembrane conductance regulator (CFTR) in vitro and in vivo.
    Boucherle B; Bertrand J; Maurin B; Renard BL; Fortuné A; Tremblier B; Becq F; Norez C; Décout JL
    Eur J Med Chem; 2014 Aug; 83():455-65. PubMed ID: 24992073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the mechanisms underlying CFTR channel activity, the molecular basis for cystic fibrosis and strategies for therapy.
    Kim Chiaw P; Eckford PD; Bear CE
    Essays Biochem; 2011 Sep; 50(1):233-48. PubMed ID: 21967060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFTR gating I: Characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (DeltaR-CFTR).
    Bompadre SG; Ai T; Cho JH; Wang X; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2005 Apr; 125(4):361-75. PubMed ID: 15767295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two rare variants that affect the same amino acid in CFTR have distinct responses to ivacaftor.
    Li H; Rodrat M; Al-Salmani MK; Veselu DF; Han ST; Raraigh KS; Cutting GR; Sheppard DN
    J Physiol; 2024 Jan; 602(2):333-354. PubMed ID: 38186087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.