These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25763575)

  • 1. Bistability in a metabolic network underpins the de novo evolution of colony switching in Pseudomonas fluorescens.
    Gallie J; Libby E; Bertels F; Remigi P; Jendresen CB; Ferguson GC; Desprat N; Buffing MF; Sauer U; Beaumont HJ; Martinussen J; Kilstrup M; Rainey PB
    PLoS Biol; 2015 Mar; 13(3):e1002109. PubMed ID: 25763575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated Phenotypic Evolution by Different Genetic Routes in Pseudomonas fluorescens SBW25.
    Gallie J; Bertels F; Remigi P; Ferguson GC; Nestmann S; Rainey PB
    Mol Biol Evol; 2019 May; 36(5):1071-1085. PubMed ID: 30835268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial evolution: Cutting out the carBs feeds a bistable switch.
    Attar N
    Nat Rev Microbiol; 2015 May; 13(5):250. PubMed ID: 25853781
    [No Abstract]   [Full Text] [Related]  

  • 4. Ribosome Provisioning Activates a Bistable Switch Coupled to Fast Exit from Stationary Phase.
    Remigi P; Ferguson GC; McConnell E; De Monte S; Rogers DW; Rainey PB
    Mol Biol Evol; 2019 May; 36(5):1056-1070. PubMed ID: 30835283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of genes affecting alginate biosynthesis in Pseudomonas fluorescens by screening a transposon insertion library.
    Ertesvåg H; Sletta H; Senneset M; Sun YQ; Klinkenberg G; Konradsen TA; Ellingsen TE; Valla S
    BMC Genomics; 2017 Jan; 18(1):11. PubMed ID: 28049432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrimidine biosynthetic pathway of Pseudomonas fluorescens.
    Chu CP; West TP
    J Gen Microbiol; 1990 May; 136(5):875-80. PubMed ID: 1974280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of carbon source on pyrimidine formation in Pseudomonas fluorescens ATCC 13525.
    West TP
    Microbiol Res; 2005; 160(4):337-42. PubMed ID: 16255137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluxome study of Pseudomonas fluorescens reveals major reorganisation of carbon flux through central metabolic pathways in response to inactivation of the anti-sigma factor MucA.
    Lien SK; Niedenführ S; Sletta H; Nöh K; Bruheim P
    BMC Syst Biol; 2015 Feb; 9():6. PubMed ID: 25889900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forecasting of phenotypic and genetic outcomes of experimental evolution in Pseudomonas protegens.
    Pentz JT; Lind PA
    PLoS Genet; 2021 Aug; 17(8):e1009722. PubMed ID: 34351900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113.
    Muriel C; Arrebola E; Redondo-Nieto M; Martínez-Granero F; Jalvo B; Pfeilmeier S; Blanco-Romero E; Baena I; Malone JG; Rivilla R; Martín M
    Sci Rep; 2018 Jan; 8(1):1979. PubMed ID: 29386661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of pyrimidine biosynthesis in "Pseudomonas alkanolytica" ATCC 21034.
    West TP
    J Basic Microbiol; 2004; 44(3):253-7. PubMed ID: 15162399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Jones J; Studholme DJ; Knight CG; Preston GM
    Environ Microbiol; 2007 Dec; 9(12):3046-64. PubMed ID: 17991033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of pyrimidine synthesis in Pseudomonas mendocina.
    Santiago MF; West TP
    J Basic Microbiol; 2002; 42(1):75-9. PubMed ID: 11925763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into Pseudomonas fluorescens alginate biosynthesis relevant for the establishment of an efficient production process for microbial alginates.
    Maleki S; Mærk M; Hrudikova R; Valla S; Ertesvåg H
    N Biotechnol; 2017 Jul; 37(Pt A):2-8. PubMed ID: 27593394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0.
    Schnider-Keel U; Lejbølle KB; Baehler E; Haas D; Keel C
    Appl Environ Microbiol; 2001 Dec; 67(12):5683-93. PubMed ID: 11722923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation.
    Koza A; Kusmierska A; McLaughlin K; Moshynets O; Spiers AJ
    FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28535292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary convergence in experimental Pseudomonas populations.
    Lind PA; Farr AD; Rainey PB
    ISME J; 2017 Mar; 11(3):589-600. PubMed ID: 27911438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gac-mediated changes in pyrroloquinoline quinone biosynthesis enhance the antimicrobial activity of Pseudomonas fluorescens SBW25.
    Cheng X; van der Voort M; Raaijmakers JM
    Environ Microbiol Rep; 2015 Feb; 7(1):139-47. PubMed ID: 25356880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial storage effect promotes biodiversity during adaptive radiation.
    Tan J; Rattray JB; Yang X; Jiang L
    Proc Biol Sci; 2017 Jul; 284(1858):. PubMed ID: 28701564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.