These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 25763942)

  • 1. Compressibility of a fermionic mott insulator of ultracold atoms.
    Duarte PM; Hart RA; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Hulet RG
    Phys Rev Lett; 2015 Feb; 114(7):070403. PubMed ID: 25763942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local quantum criticality in confined fermions on optical lattices.
    Rigol M; Muramatsu A; Batrouni GG; Scalettar RT
    Phys Rev Lett; 2003 Sep; 91(13):130403. PubMed ID: 14525290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases.
    Gemelke N; Zhang X; Hung CL; Chin C
    Nature; 2009 Aug; 460(7258):995-8. PubMed ID: 19693080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiferromagnetic Correlations in Two-Dimensional Fermionic Mott-Insulating and Metallic Phases.
    Drewes JH; Miller LA; Cocchi E; Chan CF; Wurz N; Gall M; Pertot D; Brennecke F; Köhl M
    Phys Rev Lett; 2017 Apr; 118(17):170401. PubMed ID: 28498688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring competing density order in the ionic Hubbard model with ultracold fermions.
    Messer M; Desbuquois R; Uehlinger T; Jotzu G; Huber S; Greif D; Esslinger T
    Phys Rev Lett; 2015 Sep; 115(11):115303. PubMed ID: 26406839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realizing the strongly correlated d-wave Mott-insulator state in a fermionic cold-atom optical lattice.
    Peterson MR; Zhang C; Tewari S; Sarma SD
    Phys Rev Lett; 2008 Oct; 101(15):150406. PubMed ID: 18999579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
    Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I
    Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-resolved imaging of a fermionic Mott insulator.
    Greif D; Parsons MF; Mazurenko A; Chiu CS; Blatt S; Huber F; Ji G; Greiner M
    Science; 2016 Feb; 351(6276):953-7. PubMed ID: 26917766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creation of a low-entropy quantum gas of polar molecules in an optical lattice.
    Moses SA; Covey JP; Miecnikowski MT; Yan B; Gadway B; Ye J; Jin DS
    Science; 2015 Nov; 350(6261):659-62. PubMed ID: 26542566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended Bose-Hubbard models with ultracold magnetic atoms.
    Baier S; Mark MJ; Petter D; Aikawa K; Chomaz L; Cai Z; Baranov M; Zoller P; Ferlaino F
    Science; 2016 Apr; 352(6282):201-5. PubMed ID: 27124454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of 2D Fermionic Mott Insulators of ^{40}K with Single-Site Resolution.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Zwierlein MW
    Phys Rev Lett; 2016 Jun; 116(23):235301. PubMed ID: 27341242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competing magnetic orders in a bilayer Hubbard model with ultracold atoms.
    Gall M; Wurz N; Samland J; Chan CF; Köhl M
    Nature; 2021 Jan; 589(7840):40-43. PubMed ID: 33408376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing number squeezing of ultracold atoms across the superfluid-Mott insulator transition.
    Gerbier F; Fölling S; Widera A; Mandel O; Bloch I
    Phys Rev Lett; 2006 Mar; 96(9):090401. PubMed ID: 16606244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mott-insulator States of ultracold atoms in optical resonators.
    Larson J; Damski B; Morigi G; Lewenstein M
    Phys Rev Lett; 2008 Feb; 100(5):050401. PubMed ID: 18352345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum quench of an atomic Mott insulator.
    Chen D; White M; Borries C; DeMarco B
    Phys Rev Lett; 2011 Jun; 106(23):235304. PubMed ID: 21770517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice.
    Jördens R; Tarruell L; Greif D; Uehlinger T; Strohmaier N; Moritz H; Esslinger T; De Leo L; Kollath C; Georges A; Scarola V; Pollet L; Burovski E; Kozik E; Troyer M
    Phys Rev Lett; 2010 May; 104(18):180401. PubMed ID: 20482156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.