These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25763943)

  • 1. Composable security proof for continuous-variable quantum key distribution with coherent States.
    Leverrier A
    Phys Rev Lett; 2015 Feb; 114(7):070501. PubMed ID: 25763943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks.
    Furrer F; Franz T; Berta M; Leverrier A; Scholz VB; Tomamichel M; Werner RF
    Phys Rev Lett; 2012 Sep; 109(10):100502. PubMed ID: 23005270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction.
    Leverrier A
    Phys Rev Lett; 2017 May; 118(20):200501. PubMed ID: 28581779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Security of continuous-variable quantum key distribution against general attacks.
    Leverrier A; García-Patrón R; Renner R; Cerf NJ
    Phys Rev Lett; 2013 Jan; 110(3):030502. PubMed ID: 23373907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing.
    Scarani V; Renner R
    Phys Rev Lett; 2008 May; 100(20):200501. PubMed ID: 18518517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.
    Gehring T; Händchen V; Duhme J; Furrer F; Franz T; Pacher C; Werner RF; Schnabel R
    Nat Commun; 2015 Oct; 6():8795. PubMed ID: 26514280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postselection technique for quantum channels with applications to quantum cryptography.
    Christandl M; König R; Renner R
    Phys Rev Lett; 2009 Jan; 102(2):020504. PubMed ID: 19257257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collective attacks and unconditional security in continuous variable quantum key distribution.
    Grosshans F
    Phys Rev Lett; 2005 Jan; 94(2):020504. PubMed ID: 15698157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-key analysis for twin-field quantum key distribution with composable security.
    Yin HL; Chen ZB
    Sci Rep; 2019 Nov; 9(1):17113. PubMed ID: 31745131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical continuous-variable quantum key distribution with composable security.
    Jain N; Chin HM; Mani H; Lupo C; Nikolic DS; Kordts A; Pirandola S; Pedersen TB; Kolb M; Ömer B; Pacher C; Gehring T; Andersen UL
    Nat Commun; 2022 Aug; 13(1):4740. PubMed ID: 35961965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography.
    Renner R; Cirac JI
    Phys Rev Lett; 2009 Mar; 102(11):110504. PubMed ID: 19392183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution.
    García-Patrón R; Cerf NJ
    Phys Rev Lett; 2006 Nov; 97(19):190503. PubMed ID: 17155606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Parameter Estimation of Entropic Uncertainty Relation in Continuous-Variable Quantum Key Distribution.
    Chen Z; Zhang Y; Wang X; Yu S; Guo H
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.
    Zhang Z; Mower J; Englund D; Wong FN; Shapiro JH
    Phys Rev Lett; 2014 Mar; 112(12):120506. PubMed ID: 24724641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-variable source-device-independent quantum key distribution against general attacks.
    Zhang Y; Chen Z; Weedbrook C; Yu S; Guo H
    Sci Rep; 2020 Apr; 10(1):6673. PubMed ID: 32317691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography.
    Pirandola S; Braunstein SL; Lloyd S
    Phys Rev Lett; 2008 Nov; 101(20):200504. PubMed ID: 19113324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous-variable quantum cryptography is secure against non-Gaussian attacks.
    Grosshans F; Cerf NJ
    Phys Rev Lett; 2004 Jan; 92(4):047905. PubMed ID: 14995411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-key analysis for measurement-device-independent quantum key distribution.
    Curty M; Xu F; Cui W; Lim CC; Tamaki K; Lo HK
    Nat Commun; 2014 Apr; 5():3732. PubMed ID: 24776959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composable security for inter-satellite continuous-variable quantum key distribution in the terahertz band.
    Liu C; Zhu C; Nie M; Yang H; Pei C
    Opt Express; 2022 Apr; 30(9):14798-14816. PubMed ID: 35473216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution.
    Liao Q; Wang Y; Huang D; Guo Y
    Opt Express; 2018 Aug; 26(16):19907-19920. PubMed ID: 30119310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.