These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2576399)

  • 21. Retinoic acid can mimic endogenous signals involved in transformation of the Xenopus nervous system.
    Sharpe CR
    Neuron; 1991 Aug; 7(2):239-47. PubMed ID: 1678613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organizer-specific homeobox genes in Xenopus laevis embryos.
    Blumberg B; Wright CV; De Robertis EM; Cho KW
    Science; 1991 Jul; 253(5016):194-6. PubMed ID: 1677215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localized expression of a Xenopus POU gene depends on cell-autonomous transcriptional activation and induction-dependent inactivation.
    Frank D; Harland RM
    Development; 1992 Jun; 115(2):439-48. PubMed ID: 1358592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graded amounts of Xenopus dishevelled specify discrete anteroposterior cell fates in prospective ectoderm.
    Itoh K; Sokol SY
    Mech Dev; 1997 Jan; 61(1-2):113-25. PubMed ID: 9076682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman.
    Evans SM; Yan W; Murillo MP; Ponce J; Papalopulu N
    Development; 1995 Nov; 121(11):3889-99. PubMed ID: 8582297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. XLPOU 1 and XLPOU 2, two novel POU domain genes expressed in the dorsoanterior region of Xenopus embryos.
    Agarwal VR; Sato SM
    Dev Biol; 1991 Oct; 147(2):363-73. PubMed ID: 1717323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A developmental pathway controlling outgrowth of the Xenopus tail bud.
    Beck CW; Slack JM
    Development; 1999 Apr; 126(8):1611-20. PubMed ID: 10079224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm.
    Kumano G; Ezal C; Smith WC
    Dev Biol; 2001 Aug; 236(2):465-77. PubMed ID: 11476585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mespo: a novel basic helix-loop-helix gene expressed in the presomitic mesoderm and posterior tailbud of Xenopus embryos.
    Joseph EM; Cassetta LA
    Mech Dev; 1999 Apr; 82(1-2):191-4. PubMed ID: 10354484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of myosin heavy chain transcripts during Xenopus laevis development.
    Radice GP; Malacinski GM
    Dev Biol; 1989 Jun; 133(2):562-8. PubMed ID: 2731640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinoid signalling is required for information transfer from mesoderm to neuroectoderm during gastrulation.
    Lloret-Vilaspasa F; Jansen HJ; de Roos K; Chandraratna RA; Zile MH; Stern CD; Durston AJ
    Int J Dev Biol; 2010; 54(4):599-608. PubMed ID: 20209433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Xenopus MyoD gene: an unlocalised maternal mRNA predates lineage-restricted expression in the early embryo.
    Harvey RP
    Development; 1990 Apr; 108(4):669-80. PubMed ID: 2167198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis.
    Chen Y; Whitaker LL; Ramsdell AF
    Dev Dyn; 2005 Feb; 232(2):393-8. PubMed ID: 15614766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A retinoic acid receptor expressed in the early development of Xenopus laevis.
    Ellinger-Ziegelbauer H; Dreyer C
    Genes Dev; 1991 Jan; 5(1):94-104. PubMed ID: 1846602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesoderm induction and axis determination in Xenopus laevis.
    Dawid IB
    Bioessays; 1992 Oct; 14(10):687-91. PubMed ID: 1365880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates.
    Snir M; Ofir R; Elias S; Frank D
    EMBO J; 2006 Aug; 25(15):3664-74. PubMed ID: 16858397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis.
    Penzel R; Oschwald R; Chen Y; Tacke L; Grunz H
    Int J Dev Biol; 1997 Oct; 41(5):667-77. PubMed ID: 9415486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Ventral and posterior expression of the homeo box gene eve1 in zebrafish (Brachydanio rerio) is repressed in dorsalized embryos].
    Joly JS; Maury M; Joly C; Boulekbache H; Condamine H
    C R Seances Soc Biol Fil; 1993; 187(3):356-63. PubMed ID: 7912639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes.
    Holland LZ
    Dev Biol; 2002 Jan; 241(2):209-28. PubMed ID: 11784106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ADHFe1: a novel enzyme involved in retinoic acid-dependent Hox activation.
    Shabtai Y; Shukrun N; Fainsod A
    Int J Dev Biol; 2017; 61(3-4-5):303-310. PubMed ID: 28621427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.