These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25764054)

  • 41. 'Candidatus Dichloromethanomonas elyunquensis' gen. nov., sp. nov., a dichloromethane-degrading anaerobe of the Peptococcaceae family.
    Kleindienst S; Higgins SA; Tsementzi D; Chen G; Konstantinidis KT; Mack EE; Löffler FE
    Syst Appl Microbiol; 2017 Apr; 40(3):150-159. PubMed ID: 28292625
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis.
    Stromeyer SA; Winkelbauer W; Kohler H; Cook AM; Leisinger T
    Biodegradation; 1991; 2(2):129-37. PubMed ID: 1368154
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI.
    Patterson BM; Lee M; Bastow TP; Wilson JT; Donn MJ; Furness A; Goodwin B; Manefield M
    J Contam Hydrol; 2016 May; 188():1-11. PubMed ID: 26934432
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid quantitative estimation of chlorinated methane utilizing bacteria in drinking water and the effect of nanosilver on biodegradation of the trichloromethane in the environment.
    Zamani I; Bouzari M; Emtiazi G; Fanaei M
    Jundishapur J Microbiol; 2015 Mar; 8(3):e14965. PubMed ID: 25834716
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates.
    Hatzinger PB; Banerjee R; Rezes R; Streger SH; McClay K; Schaefer CE
    Biodegradation; 2017 Dec; 28(5-6):453-468. PubMed ID: 29022194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.
    Rajajayavel SR; Ghoshal S
    Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biodegradation of dichloromethane along with other VOCs from pharmaceutical wastewater.
    Priya VS; Philip L
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1197-218. PubMed ID: 23306883
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes.
    Grostern A; Edwards EA
    Appl Environ Microbiol; 2006 Dec; 72(12):7849-56. PubMed ID: 17056695
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Involvement of Dehalobacter strains in the anaerobic dechlorination of 2,4,6-trichlorophenol.
    Li Z; Suzuki D; Zhang C; Yoshida N; Yang S; Katayama A
    J Biosci Bioeng; 2013 Nov; 116(5):602-9. PubMed ID: 23777715
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transformation of carbon tetrachloride and chloroform by trichloroethene respiring anaerobic mixed cultures and supernatant.
    Vickstrom KE; Azizian MF; Semprini L
    Chemosphere; 2017 Sep; 182():65-75. PubMed ID: 28494362
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mineralization versus fermentation: evidence for two distinct anaerobic bacterial degradation pathways for dichloromethane.
    Chen G; Fisch AR; Gibson CM; Erin Mack E; Seger ES; Campagna SR; Löffler FE
    ISME J; 2020 Apr; 14(4):959-970. PubMed ID: 31907367
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simultaneous anaerobic transformation of tetrachloroethene and carbon tetrachloride in a continuous flow column.
    Azizian MF; Semprini L
    J Contam Hydrol; 2016 Jul; 190():58-68. PubMed ID: 27183341
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform.
    Ding C; Zhao S; He J
    Environ Microbiol; 2014 Nov; 16(11):3387-97. PubMed ID: 24428759
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction of chlorinated methanes with nano-scale Fe particles: effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction.
    Feng J; Zhu BW; Lim TT
    Chemosphere; 2008 Dec; 73(11):1817-23. PubMed ID: 18809199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring Mechanisms of Biotic Chlorinated Alkane Reduction: Evidence of Nucleophilic Substitution (S
    Heckel B; Elsner M
    Environ Sci Technol; 2022 May; 56(10):6325-6336. PubMed ID: 35467338
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stable carbon isotope enrichment factors for cis-1,2-dichloroethene and vinyl chloride reductive dechlorination by Dehalococcoides.
    Fletcher KE; Nijenhuis I; Richnow HH; Löffler FE
    Environ Sci Technol; 2011 Apr; 45(7):2951-7. PubMed ID: 21391634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Advances in biotic and abiotic mutual promoting mechanism for chlorinated aliphatic hydrocarbons degradation].
    Liu S; Zhao T; Xing Z; Yang X; Wang E
    Sheng Wu Gong Cheng Xue Bao; 2018 Apr; 34(4):510-524. PubMed ID: 29701025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Degradation of dichloromethane by an isolated strain Pandoraea pnomenusa and its performance in a biotrickling filter.
    Yu J; Cai W; Cheng Z; Chen J
    J Environ Sci (China); 2014 May; 26(5):1108-17. PubMed ID: 25079641
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial degradation of the brominated flame retardant TBNPA by groundwater bacteria: laboratory and field study.
    Balaban N; Bernstein A; Gelman F; Ronen Z
    Chemosphere; 2016 Aug; 156():367-373. PubMed ID: 27183339
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reductive dechlorination of trichloroethylene by combining autotrophic hydrogen-bacteria and zero-valent iron particles.
    Wang SM; Tseng SK
    Bioresour Technol; 2009 Jan; 100(1):111-7. PubMed ID: 18603424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.