BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 25764528)

  • 1. Invasive dreissenid mussels and benthic algae in Lake Michigan: characterizing effects on sediment bacterial communities.
    Lee PO; McLellan SL; Graham LE; Young EB
    FEMS Microbiol Ecol; 2015 Jan; 91(1):1-12. PubMed ID: 25764528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broad shifts in the resource use of a commercially harvested fish following the invasion of dreissenid mussels.
    Fera SA; Rennie MD; Dunlop ES
    Ecology; 2017 Jun; 98(6):1681-1692. PubMed ID: 28369860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial and archaeal communities inhabiting mussels, sediment and water in Indonesian anchialine lakes.
    Cleary DFR; Polónia ARM
    Antonie Van Leeuwenhoek; 2018 Feb; 111(2):237-257. PubMed ID: 29027059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sediment prokaryote communities in different sites of eutrophic Lake Taihu and their interactions with environmental factors.
    Chen N; Yang JS; Qu JH; Li HF; Liu WJ; Li BZ; Wang ET; Yuan HL
    World J Microbiol Biotechnol; 2015 Jun; 31(6):883-96. PubMed ID: 25772498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinctive Patterns in the Taxonomical Resolution of Bacterioplankton in the Sediment and Pore Waters of Contrasted Freshwater Lakes.
    Keshri J; Pradeep Ram AS; Sime-Ngando T
    Microb Ecol; 2018 Apr; 75(3):662-673. PubMed ID: 28920165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mussels can both outweigh and interact with the effects of terrestrial to freshwater resource subsidies on littoral benthic communities.
    Smith BR; Aldridge DC; Tanentzap AJ
    Sci Total Environ; 2018 May; 622-623():49-56. PubMed ID: 29202368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition and predicted functional ecology of mussel-associated bacteria in Indonesian marine lakes.
    Cleary DF; Becking LE; Polónia AR; Freitas RM; Gomes NC
    Antonie Van Leeuwenhoek; 2015 Mar; 107(3):821-34. PubMed ID: 25563637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nearshore energy subsidies support Lake Michigan fishes and invertebrates following major changes in food web structure.
    Turschak BA; Bunnell D; Czesny S; Höök TO; Janssen J; Warner D; Bootsma HA
    Ecology; 2014 May; 95(5):1243-52. PubMed ID: 25000756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Will the Displacement of Zebra Mussels by Quagga Mussels Increase Water Clarity in Shallow Lakes during Summer? Results from a Mesocosm Experiment.
    Mei X; Zhang X; Kassam SS; Rudstam LG
    PLoS One; 2016; 11(12):e0168494. PubMed ID: 28005940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the benthic bacterial communities within and surrounding Dreissena clusters in lakes.
    Lohner RN; Sigler V; Mayer CM; Balogh C
    Microb Ecol; 2007 Oct; 54(3):469-77. PubMed ID: 17308984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial communities in sediments of the shallow Lake Dongping in China.
    Song H; Li Z; Du B; Wang G; Ding Y
    J Appl Microbiol; 2012 Jan; 112(1):79-89. PubMed ID: 22044641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt.
    Mesbah NM; Abou-El-Ela SH; Wiegel J
    Microb Ecol; 2007 Nov; 54(4):598-617. PubMed ID: 17450395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of deposit-feeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling: implications for the restoration of eutrophic shallow lakes.
    Zhang X; Liu Z; Jeppesen E; Taylor WD
    Water Res; 2014 Mar; 50():135-46. PubMed ID: 24370657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow cytometric monitoring of bacterioplankton phenotypic diversity predicts high population-specific feeding rates by invasive dreissenid mussels.
    Props R; Schmidt ML; Heyse J; Vanderploeg HA; Boon N; Denef VJ
    Environ Microbiol; 2018 Feb; 20(2):521-534. PubMed ID: 29027374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Community Composition and Putative Biogeochemical Functions in the Sediment and Water of Tropical Granite Quarry Lakes.
    Kumar A; Ng DHP; Wu Y; Cao B
    Microb Ecol; 2019 Jan; 77(1):1-11. PubMed ID: 29808411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal and spatial variation in the sediment bacterial community and diversity of Lake Bosten, China.
    Zhang L; Zhao T; Shen T; Gao G
    J Basic Microbiol; 2019 Feb; 59(2):224-233. PubMed ID: 30417400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms.
    Harrison JP; Schratzberger M; Sapp M; Osborn AM
    BMC Microbiol; 2014 Sep; 14():232. PubMed ID: 25245856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microbial composition of three limnologically disparate hypersaline Antarctic lakes.
    Bowman JP; McCammon SA; Rea SM; McMeekin TA
    FEMS Microbiol Lett; 2000 Feb; 183(1):81-8. PubMed ID: 10650206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes.
    Yang Y; Dai Y; Li N; Li B; Xie S; Liu Y
    Microb Ecol; 2017 Feb; 73(2):285-295. PubMed ID: 27726034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal dynamics of sediment bacterial communities in monospecific stands of Juncus maritimus and Spartina maritima.
    Cleary DF; Polónia AR; Sousa AI; Lillebø AI; Queiroga H; Gomes NC
    Plant Biol (Stuttg); 2016 Sep; 18(5):824-34. PubMed ID: 27061465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.