These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25764706)

  • 1. [Analysis of corticomuscular coherence during rehabilitation exercises after stroke].
    Ma P; Chen Y; Du Y; Su Y; Wu X; Liang Z; Xie P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Oct; 31(5):971-7. PubMed ID: 25764706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analysis of Abnormal Muscular Coupling During Rehabilitation after Stroke].
    Xie P; Song Y; Guo Z; Chen X; Wu X; Su Y; Du Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):244-54. PubMed ID: 29708323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Effects of Peripheral Electrical Stimulation on Corticomuscular Functional Connectivity Stroke Survivors.
    Lai MI; Pan LL; Tsai MW; Shih YF; Wei SH; Chou LW
    Top Stroke Rehabil; 2016 Jun; 23(3):154-62. PubMed ID: 27077975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional corticomuscular connection during reaching is weakened following stroke.
    Fang Y; Daly JJ; Sun J; Hvorat K; Fredrickson E; Pundik S; Sahgal V; Yue GH
    Clin Neurophysiol; 2009 May; 120(5):994-1002. PubMed ID: 19362515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [EEG-EMG coherence analysis of different hand motions in healthy subjects].
    Li Y; Li L; Zheng X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Oct; 31(5):962-6. PubMed ID: 25764704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal functional corticomuscular coupling after stroke.
    Chen X; Xie P; Zhang Y; Chen Y; Cheng S; Zhang L
    Neuroimage Clin; 2018; 19():147-159. PubMed ID: 30035012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of training status on beta-range corticomuscular coherence in agonist vs. antagonist muscles during isometric knee contractions.
    Dal Maso F; Longcamp M; Cremoux S; Amarantini D
    Exp Brain Res; 2017 Oct; 235(10):3023-3031. PubMed ID: 28725924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronous analyses between electroencephalogram and surface electromyogram based on motor imagery and motor execution.
    Zhang Y; Chen W; Lin CL; Pei Z; Chen J; Wang D
    Rev Sci Instrum; 2022 Nov; 93(11):115114. PubMed ID: 36461556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical activity differs between position- and force-control knee extension tasks.
    Poortvliet PC; Tucker KJ; Finnigan S; Scott D; Sowman P; Hodges PW
    Exp Brain Res; 2015 Dec; 233(12):3447-57. PubMed ID: 26292962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling.
    Siemionow V; Sahgal V; Yue GH
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):97-106. PubMed ID: 20371421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticomuscular coherence with and without additional task in the elderly.
    Johnson AN; Shinohara M
    J Appl Physiol (1985); 2012 Mar; 112(6):970-81. PubMed ID: 22223451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying support vector regression analysis on grip force level-related corticomuscular coherence.
    Rong Y; Han X; Hao D; Cao L; Wang Q; Li M; Duan L; Zeng Y
    J Comput Neurosci; 2014 Oct; 37(2):281-91. PubMed ID: 24756619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered corticomuscular coherence elicited by paced isotonic contractions in individuals with cerebral palsy: a case-control study.
    Riquelme I; Cifre I; Muñoz MA; Montoya P
    J Electromyogr Kinesiol; 2014 Dec; 24(6):928-33. PubMed ID: 25127492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Botulinum toxin combined with rehabilitation decrease corticomuscular coherence in stroke patients.
    Delcamp C; Cormier C; Chalard A; Amarantini D; Gasq D
    Clin Neurophysiol; 2022 Apr; 136():49-57. PubMed ID: 35131638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contraction level-related modulation of corticomuscular coherence differs between the tibialis anterior and soleus muscles in humans.
    Ushiyama J; Masakado Y; Fujiwara T; Tsuji T; Hase K; Kimura A; Liu M; Ushiba J
    J Appl Physiol (1985); 2012 Apr; 112(8):1258-67. PubMed ID: 22302959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional connectivity in the neuromuscular system underlying bimanual coordination.
    de Vries IE; Daffertshofer A; Stegeman DF; Boonstra TW
    J Neurophysiol; 2016 Dec; 116(6):2576-2585. PubMed ID: 27628205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticomuscular coherence analysis on hand movement distinction for active rehabilitation.
    Lou X; Xiao S; Qi Y; Hu X; Wang Y; Zheng X
    Comput Math Methods Med; 2013; 2013():908591. PubMed ID: 23690885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analysis of multichannel intermuscular coupling characteristics during rehabilitation after stroke].
    Du Y; Yang W; Yao W; Qi W; Chen X; Xie B; Xie P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):720-727. PubMed ID: 31631619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Pain Decreases Corticomuscular Coherence in a Force- But Not a Position-Control Task.
    Poortvliet PC; Tucker KJ; Finnigan S; Scott D; Hodges PW
    J Pain; 2019 Feb; 20(2):192-200. PubMed ID: 30266268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying bidirectional total and non-linear information flow in functional corticomuscular coupling during a dorsiflexion task: a pilot study.
    Liang T; Zhang Q; Liu X; Dong B; Liu X; Wang H
    J Neuroeng Rehabil; 2021 May; 18(1):74. PubMed ID: 33947410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.