These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 25764720)
1. [Research on magnetic coupling centrifugal blood pump control based on a self-tuning fuzzy PI algorithm]. Yang L; Yang M; Xu Z; Zhuang X; Wang W; Zhang H; Han L; Xu L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Oct; 31(5):1050-6. PubMed ID: 25764720 [TBL] [Abstract][Full Text] [Related]
2. Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump. Ren Z; Jahanmir S; Heshmat H; Hunsberger AZ; Walton JF ASAIO J; 2009; 55(4):340-7. PubMed ID: 19381082 [TBL] [Abstract][Full Text] [Related]
3. Current status of the gyro centrifugal blood pump--development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project). Nosé Y; Furukawa K Artif Organs; 2004 Oct; 28(10):953-8. PubMed ID: 15385004 [TBL] [Abstract][Full Text] [Related]
4. [Research on the feasibility of a magnetic-coupling-driven axial flow blood pump]. Yu X; Ding W; Wang W; Chen E; Jiang Z; Zou W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Feb; 21(1):131-3. PubMed ID: 15022483 [TBL] [Abstract][Full Text] [Related]
5. Computer simulation of sensorless fuzzy control of a rotary blood pump to assure normal physiology. Fu M; Xu L ASAIO J; 2000; 46(3):273-8. PubMed ID: 10826735 [TBL] [Abstract][Full Text] [Related]
6. A new model of centrifugal blood pump for cardiopulmonary bypass: design improvement, performance, and hemolysis tests. Leme J; Fonseca J; Bock E; da Silva C; da Silva BU; Dos Santos AE; Dinkhuysen J; Andrade A; Biscegli JF Artif Organs; 2011 May; 35(5):443-7. PubMed ID: 21595709 [TBL] [Abstract][Full Text] [Related]
7. Fuzzy-based modeling and speed optimization of a centrifugal blood pump using a modified and constrained Bees algorithm. Incebay O; Onder A; Arif Sen M; Yapici R; Kalyoncu M Comput Methods Programs Biomed; 2022 Jun; 221():106867. PubMed ID: 35597207 [TBL] [Abstract][Full Text] [Related]
8. Progress in the design of a centrifugal cardiac assist pump with trans-cutaneous energy transmission by magnetic coupling. Dorman F; Bernstein EF; Blackshear PL; Sovilj R; Scott DR Trans Am Soc Artif Intern Organs; 1969; 15():441-8. PubMed ID: 5791424 [No Abstract] [Full Text] [Related]
9. Real-time studies of the pivot bearings in the NEDO Gyro PI-710 centrifugal blood pump. Asai T; Watanabe K; Ito S; Tsujimura S; Motomura T; Shinohara T; Glueck JA; Nosé Y Artif Organs; 2004 Oct; 28(10):899-903. PubMed ID: 15384995 [TBL] [Abstract][Full Text] [Related]
10. Study of a centrifugal blood pump in a mock loop system. Uebelhart B; da Silva BU; Fonseca J; Bock E; Leme J; da Silva C; Leão T; Andrade A Artif Organs; 2013 Nov; 37(11):946-9. PubMed ID: 24237361 [TBL] [Abstract][Full Text] [Related]
11. Modeling and control of a magnetic bearing system for the magnetically suspended centrifugal blood pump. Kim H; Kim HC Int J Artif Organs; 2000 Oct; 23(10):689-96. PubMed ID: 11075899 [TBL] [Abstract][Full Text] [Related]
12. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump. Pai CN; Shinshi T; Shimokohbe A Proc Inst Mech Eng H; 2010; 224(7):913-24. PubMed ID: 20839658 [TBL] [Abstract][Full Text] [Related]
13. Development of magnetic bearing system for a new third-generation blood pump. Lee JJ; Ahn CB; Choi J; Park JW; Song SJ; Sun K Artif Organs; 2011 Nov; 35(11):1082-94. PubMed ID: 22097983 [TBL] [Abstract][Full Text] [Related]
14. Design, development, and first in vivo results of an implantable ventricular assist device, MicroVad. Kerkhoffs W; Schumacher O; Meyns B; Verbeken E; Leunens V; Bollen H; Reul H Artif Organs; 2004 Oct; 28(10):904-10. PubMed ID: 15384996 [TBL] [Abstract][Full Text] [Related]
15. Induction motor speed drive improvement using fuzzy IP-self-tuning controller. A real time implementation. Lokriti A; Salhi I; Doubabi S; Zidani Y ISA Trans; 2013 May; 52(3):406-17. PubMed ID: 23317661 [TBL] [Abstract][Full Text] [Related]
16. Minimal sensor count approach to fuzzy logic rotary blood pump flow control. Casas F; Ahmed N; Reeves A ASAIO J; 2007; 53(2):140-6. PubMed ID: 17413551 [TBL] [Abstract][Full Text] [Related]
17. Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function. Granegger M; Moscato F; Casas F; Wieselthaler G; Schima H Artif Organs; 2012 Aug; 36(8):691-9. PubMed ID: 22882439 [TBL] [Abstract][Full Text] [Related]
18. In vivo evaluation of the "TinyPump" as a pediatric left ventricular assist device. Kitao T; Ando Y; Yoshikawa M; Kobayashi M; Kimura T; Ohsawa H; Machida S; Yokoyama N; Sakota D; Konno T; Ishihara K; Takatani S Artif Organs; 2011 May; 35(5):543-53. PubMed ID: 21595723 [TBL] [Abstract][Full Text] [Related]
19. Physiological control of intraaorta pump based on heart rate. Gao B; Nie LY; Chang Y; Zeng Y ASAIO J; 2011; 57(3):152-7. PubMed ID: 21307771 [TBL] [Abstract][Full Text] [Related]
20. Design of a small centrifugal blood pump with magnetic bearings. Jahanmir S; Hunsberger AZ; Ren Z; Heshmat H; Heshmat C; Tomaszewski MJ; Walton JF Artif Organs; 2009 Sep; 33(9):714-26. PubMed ID: 19775263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]