These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 25764927)

  • 1. [ATP release mechanism from the supporting cells in the Kölliker organ in vitro in the cochlea of newborn rat].
    He Y; Yang J
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2015 Jan; 50(1):43-9. PubMed ID: 25764927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The study on the proliferation and the apoptosis factors in vitro of Kölliker organ supporting cells in the cochlea of newborn rat].
    He Y; Yang J
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2015 Jan; 29(2):152-9. PubMed ID: 25989665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release of ATP from marginal cells in the cochlea of neonatal rats can be induced by changes in extracellular and intracellular ion concentrations.
    Peng Y; Chen J; He S; Yang J; Wu H
    PLoS One; 2012; 7(10):e47124. PubMed ID: 23071731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanism of ATP release from cultured marginal cells of stria vascularis in neonatal rat].
    Peng YT; Yang J
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2012 Jun; 47(6):471-5. PubMed ID: 22932139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP is stored in lysosomes of greater epithelial ridge supporting cells in newborn rat cochleae.
    Chen J; Hou S; Yang J
    J Cell Biochem; 2019 Dec; 120(12):19469-19481. PubMed ID: 31264740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apoptosis pattern and alterations of expression of apoptosis-related factors of supporting cells in Kölliker's organ in vivo in early stage after birth in rats.
    Liu J; Cai L; He Y; Yang J
    Eur J Histochem; 2017 Aug; 61(3):2706. PubMed ID: 29046047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kölliker's organ-supporting cells and cochlear auditory development.
    Chen J; Gao D; Sun L; Yang J
    Front Mol Neurosci; 2022; 15():1031989. PubMed ID: 36304996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted single-cell electroporation loading of Ca
    Berekméri E; Deák O; Téglás T; Sághy É; Horváth T; Aller M; Fekete Á; Köles L; Zelles T
    Hear Res; 2019 Jan; 371():75-86. PubMed ID: 30504093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of connexin43 hemichannels in mechanical stress-induced ATP release in human periodontal ligament cells.
    Luckprom P; Kanjanamekanant K; Pavasant P
    J Periodontal Res; 2011 Oct; 46(5):607-15. PubMed ID: 21615411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-induced morphological changes in supporting cells of the developing cochlea.
    Tritsch NX; Zhang YX; Ellis-Davies G; Bergles DE
    Purinergic Signal; 2010 Jun; 6(2):155-66. PubMed ID: 20806009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP release through connexin hemichannels in corneal endothelial cells.
    Gomes P; Srinivas SP; Van Driessche W; Vereecke J; Himpens B
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1208-18. PubMed ID: 15790881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Putative role of border cells in generating spontaneous morphological activity within Kölliker's organ.
    Dayaratne MW; Vlajkovic SM; Lipski J; Thorne PR
    Hear Res; 2015 Dec; 330(Pt A):90-7. PubMed ID: 26119178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca
    Mazzarda F; D'Elia A; Massari R; De Ninno A; Bertani FR; Businaro L; Ziraldo G; Zorzi V; Nardin C; Peres C; Chiani F; Tettey-Matey A; Raspa M; Scavizzi F; Soluri A; Salvatore AM; Yang J; Mammano F
    Lab Chip; 2020 Aug; 20(16):3011-3023. PubMed ID: 32700707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evidence for the existence of ATP in the marginal cells of the neonatal rat cochlea].
    Chen J; He S; Yang J
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2010 May; 24(10):462-5. PubMed ID: 20669662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translocation of telomerase reverse transcriptase coincided with ATP release in postnatal cochlear supporting cells.
    Zhang Y; Tian K; Wei W; Mi W; Lu F; Liu Z; Zhu Q; Zhang X; Geng P; Qiu J; Song Y; Zha D
    Neural Regen Res; 2024 May; 19(5):1119-1125. PubMed ID: 37862217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of ATP from avian Müller glia cells in culture.
    Loiola EC; Ventura AL
    Neurochem Int; 2011 Feb; 58(3):414-22. PubMed ID: 21193002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuations in the concentration of extracellular ATP synchronized with intracellular Ca(2+) oscillatory rhythm in cultured cardiac myocytes.
    Kawahara K; Nakayama Y
    Chronobiol Int; 2007; 24(6):1035-48. PubMed ID: 18075797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia stimulates vesicular ATP release from rat osteoblasts.
    Orriss IR; Knight GE; Utting JC; Taylor SE; Burnstock G; Arnett TR
    J Cell Physiol; 2009 Jul; 220(1):155-62. PubMed ID: 19259945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kölliker's organ and the development of spontaneous activity in the auditory system: implications for hearing dysfunction.
    Dayaratne MW; Vlajkovic SM; Lipski J; Thorne PR
    Biomed Res Int; 2014; 2014():367939. PubMed ID: 25210710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanosensitive ATP release from hemichannels and Ca²⁺ influx through TRPC6 accelerate wound closure in keratinocytes.
    Takada H; Furuya K; Sokabe M
    J Cell Sci; 2014 Oct; 127(Pt 19):4159-71. PubMed ID: 25097230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.