These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 25764984)
1. Theory of plasmon enhanced interfacial electron transfer. Wang L; May V J Phys Condens Matter; 2015 Apr; 27(13):134209. PubMed ID: 25764984 [TBL] [Abstract][Full Text] [Related]
2. Collaborative effect of plasmon-induced resonance energy and electron transfer on the interfacial electron injection dynamics of dye-sensitized solar cell. Zhang B; Zhao Y; Liang W J Chem Phys; 2019 Jul; 151(4):044702. PubMed ID: 31370537 [TBL] [Abstract][Full Text] [Related]
3. Impact of Ga-V Codoping on Interfacial Electron Transfer in Dye-Sensitized TiO2. Syzgantseva OA; Puska M; Laasonen K J Phys Chem Lett; 2015 Jul; 6(13):2603-7. PubMed ID: 26266741 [TBL] [Abstract][Full Text] [Related]
4. Density matrix based microscopic theory of molecule metal-nanoparticle interactions: linear absorbance and plasmon enhancement of intermolecular excitation energy transfer. Kyas G; May V J Chem Phys; 2011 Jan; 134(3):034701. PubMed ID: 21261378 [TBL] [Abstract][Full Text] [Related]
5. Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles. Long R; Prezhdo OV J Am Chem Soc; 2014 Mar; 136(11):4343-54. PubMed ID: 24568726 [TBL] [Abstract][Full Text] [Related]
6. Theory of molecule metal nano-particle interaction: Quantum description of plasmonic lasing. Zhang Y; May V J Chem Phys; 2015 Jun; 142(22):224702. PubMed ID: 26071722 [TBL] [Abstract][Full Text] [Related]
7. Plasmon-Induced Electron-Hole Separation at the Ag/TiO Ma J; Gao S ACS Nano; 2019 Dec; 13(12):13658-13667. PubMed ID: 31393703 [TBL] [Abstract][Full Text] [Related]
8. Metal-enhanced luminescence in colloidal solutions of CdSe and metal nanoparticles: investigation of density dependence and optical band overlap. Rohner C; Tavernaro I; Chen L; Klar PJ; Schlecht S Phys Chem Chem Phys; 2015 Feb; 17(8):5932-41. PubMed ID: 25635837 [TBL] [Abstract][Full Text] [Related]
9. Electronic and optical properties of dye-sensitized TiO₂ interfaces. Pastore M; Selloni A; Fantacci S; De Angelis F Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437 [TBL] [Abstract][Full Text] [Related]
10. Extensive reduction in back electron transfer in twisted intramolecular charge-transfer (TICT) coumarin-dye-sensitized TiO(2) nanoparticles/film: a femtosecond transient absorption study. Debnath T; Maity P; Lobo H; Singh B; Shankarling GS; Ghosh HN Chemistry; 2014 Mar; 20(12):3510-9. PubMed ID: 24615725 [TBL] [Abstract][Full Text] [Related]
11. Selective TDDFT with automatic removal of ghost transitions: application to a perylene-dye-sensitized solar cell model. Kovyrshin A; De Angelis F; Neugebauer J Phys Chem Chem Phys; 2012 Jun; 14(24):8608-19. PubMed ID: 22617938 [TBL] [Abstract][Full Text] [Related]
12. Linker dependence of interfacial electron transfer rates in Fe(II)-polypyridine sensitized solar cells. Bowman DN; Mukherjee S; Barnes LJ; Jakubikova E J Phys Condens Matter; 2015 Apr; 27(13):134205. PubMed ID: 25767105 [TBL] [Abstract][Full Text] [Related]
13. Elementary photoelectronic processes at a porphyrin dye/single-walled TiO2 nanotube hetero-interface in dye-sensitized solar cells: a first-principles study. Dong C; Li X; Zhao W; Jin P; Fan X; Qi J Chemistry; 2013 Jul; 19(30):10046-56. PubMed ID: 23765451 [TBL] [Abstract][Full Text] [Related]
14. Observation of pH-dependent back-electron-transfer dynamics in alizarin/TiO2 adsorbates: importance of trap states. Matylitsky VV; Lenz MO; Wachtveitl J J Phys Chem B; 2006 Apr; 110(16):8372-9. PubMed ID: 16623522 [TBL] [Abstract][Full Text] [Related]
15. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932 [TBL] [Abstract][Full Text] [Related]
16. Impact of a charged neighboring particle on Förster resonance energy transfer (FRET). Abeywickrama C; Premaratne M; Gunapala SD; Andrews DL J Phys Condens Matter; 2020 Feb; 32(9):095305. PubMed ID: 31722329 [TBL] [Abstract][Full Text] [Related]
17. Unified theory of plasmon-induced resonance energy transfer and hot electron injection processes for enhanced photocurrent efficiency. You X; Ramakrishna S; Seideman T J Chem Phys; 2018 Nov; 149(17):174304. PubMed ID: 30408995 [TBL] [Abstract][Full Text] [Related]
18. The origin of the strong interfacial charge-transfer absorption in the surface complex between TiO2 and dicyanomethylene compounds. Jono R; Fujisawa J; Segawa H; Yamashita K Phys Chem Chem Phys; 2013 Nov; 15(42):18584-8. PubMed ID: 24085325 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Interfacial Electron Transfer Efficiency in [Fe(ctpy) Mukherjee S; Liu C; Jakubikova E J Phys Chem A; 2018 Feb; 122(7):1821-1830. PubMed ID: 29369631 [TBL] [Abstract][Full Text] [Related]
20. Photoinduced dynamics in a molecule metal nanoparticle complex: mean-field approximation versus exact treatment of the interaction. Zelinskyy Y; Zhang Y; May V J Chem Phys; 2013 Mar; 138(11):114704. PubMed ID: 23534650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]