These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25764984)

  • 21. Effect of TiO2 particles on normal and resonance Raman spectra of coumarin 343: a theoretical investigation.
    Yang L; Wu W; Zhao Y
    Phys Chem Chem Phys; 2015 Apr; 17(16):10910-8. PubMed ID: 25821005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CHARGE TRANSFER. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition.
    Wu K; Chen J; McBride JR; Lian T
    Science; 2015 Aug; 349(6248):632-5. PubMed ID: 26250682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmon resonance energy transfer and plexcitonic solar cell.
    Nan F; Ding SJ; Ma L; Cheng ZQ; Zhong YT; Zhang YF; Qiu YH; Li X; Zhou L; Wang QQ
    Nanoscale; 2016 Aug; 8(32):15071-8. PubMed ID: 27481652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2.
    Duncan WR; Craig CF; Prezhdo OV
    J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation.
    Hirakawa T; Kamat PV
    J Am Chem Soc; 2005 Mar; 127(11):3928-34. PubMed ID: 15771529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature independence of the photoinduced electron injection in dye-sensitized TiO2 rationalized by ab initio time-domain density functional theory.
    Duncan WR; Prezhdo OV
    J Am Chem Soc; 2008 Jul; 130(30):9756-62. PubMed ID: 18593123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theory of ultrafast heterogeneous electron transfer: contributions of direct charge transfer excitations to the absorbance.
    Wang L; Willig F; May V
    J Chem Phys; 2007 Apr; 126(13):134110. PubMed ID: 17430019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic and optical properties of the triphenylamine-based organic dye sensitized TiO2 semiconductor: insight from first principles calculations.
    Liang J; Zhu C; Cao Z
    Phys Chem Chem Phys; 2013 Sep; 15(33):13844-51. PubMed ID: 23698651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interfacial electron transfer in TiO(2) surfaces sensitized with Ru(II)-polypyridine complexes.
    Jakubikova E; Snoeberger RC; Batista VS; Martin RL; Batista ER
    J Phys Chem A; 2009 Nov; 113(45):12532-40. PubMed ID: 19594155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots.
    Park Y; Pravitasari A; Raymond JE; Batteas JD; Son DH
    ACS Nano; 2013 Dec; 7(12):10544-51. PubMed ID: 24215453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast heterogeneous electron transfer reactions: comparative theoretical studies on time- and frequency-domain data.
    Wang L; Willig F; May V
    J Chem Phys; 2006 Jan; 124(1):14712. PubMed ID: 16409056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, steady-state, and femtosecond transient absorption studies of resorcinol bound ruthenium(II)- and osmium(II)-polypyridyl complexes on nano-TiO2 surface in water.
    Banerjee T; Kaniyankandy S; Das A; Ghosh HN
    Inorg Chem; 2013 May; 52(9):5366-77. PubMed ID: 23642181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy.
    Haque SA; Palomares E; Cho BM; Green AN; Hirata N; Klug DR; Durrant JR
    J Am Chem Soc; 2005 Mar; 127(10):3456-62. PubMed ID: 15755165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural heterogeneity and dynamics of dyes on TiO2: implications for charge transfer across organic-inorganic interfaces.
    Christianson JR; Schmidt JR
    Phys Chem Chem Phys; 2015 Feb; 17(5):3731-40. PubMed ID: 25557767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alkyl chain barriers for kinetic optimization in dye-sensitized solar cells.
    Kroeze JE; Hirata N; Koops S; Nazeeruddin MK; Schmidt-Mende L; Grätzel M; Durrant JR
    J Am Chem Soc; 2006 Dec; 128(50):16376-83. PubMed ID: 17165794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection from a PbSe quantum dot into the TiO2 surface.
    Long R; Prezhdo OV
    J Am Chem Soc; 2011 Nov; 133(47):19240-9. PubMed ID: 22007727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.