BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 25765133)

  • 1. Extrapolating histone marks across developmental stages, tissues, and species: an enhancer prediction case study.
    Capra JA
    BMC Genomics; 2015 Feb; 16(1):104. PubMed ID: 25765133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancer prediction with histone modification marks using a hybrid neural network model.
    Lim A; Lim S; Kim S
    Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone H3K27ac separates active from poised enhancers and predicts developmental state.
    Creyghton MP; Cheng AW; Welstead GG; Kooistra T; Carey BW; Steine EJ; Hanna J; Lodato MA; Frampton GM; Sharp PA; Boyer LA; Young RA; Jaenisch R
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21931-6. PubMed ID: 21106759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A unique chromatin signature uncovers early developmental enhancers in humans.
    Rada-Iglesias A; Bajpai R; Swigut T; Brugmann SA; Flynn RA; Wysocka J
    Nature; 2011 Feb; 470(7333):279-83. PubMed ID: 21160473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of epigenetic dynamics across human developmental stages and tissues.
    Zhang X; Gan Y; Zou G; Guan J; Zhou S
    BMC Genomics; 2019 Apr; 20(Suppl 2):221. PubMed ID: 30967107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating diverse datasets improves developmental enhancer prediction.
    Erwin GD; Oksenberg N; Truty RM; Kostka D; Murphy KK; Ahituv N; Pollard KS; Capra JA
    PLoS Comput Biol; 2014 Jun; 10(6):e1003677. PubMed ID: 24967590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenomic analysis reveals DNA motifs regulating histone modifications in human and mouse.
    Ngo V; Chen Z; Zhang K; Whitaker JW; Wang M; Wang W
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3668-3677. PubMed ID: 30755522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis.
    Bogdanovic O; Fernandez-Miñán A; Tena JJ; de la Calle-Mustienes E; Hidalgo C; van Kruysbergen I; van Heeringen SJ; Veenstra GJ; Gómez-Skarmeta JL
    Genome Res; 2012 Oct; 22(10):2043-53. PubMed ID: 22593555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data.
    Gong W; Koyano-Nakagawa N; Li T; Garry DJ
    BMC Bioinformatics; 2015 Mar; 16():74. PubMed ID: 25887857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism.
    Sharifi-Zarchi A; Gerovska D; Adachi K; Totonchi M; Pezeshk H; Taft RJ; Schöler HR; Chitsaz H; Sadeghi M; Baharvand H; Araúzo-Bravo MJ
    BMC Genomics; 2017 Dec; 18(1):964. PubMed ID: 29233090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved regulatory element prediction based on tissue-specific local epigenomic signatures.
    He Y; Gorkin DU; Dickel DE; Nery JR; Castanon RG; Lee AY; Shen Y; Visel A; Pennacchio LA; Ren B; Ecker JR
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):E1633-E1640. PubMed ID: 28193886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells.
    King AD; Huang K; Rubbi L; Liu S; Wang CY; Wang Y; Pellegrini M; Fan G
    Cell Rep; 2016 Sep; 17(1):289-302. PubMed ID: 27681438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread Enhancer Dememorization and Promoter Priming during Parental-to-Zygotic Transition.
    Zhang B; Wu X; Zhang W; Shen W; Sun Q; Liu K; Zhang Y; Wang Q; Li Y; Meng A; Xie W
    Mol Cell; 2018 Nov; 72(4):673-686.e6. PubMed ID: 30444999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential analysis of chromatin accessibility and histone modifications for predicting mouse developmental enhancers.
    Fu S; Wang Q; Moore JE; Purcaro MJ; Pratt HE; Fan K; Gu C; Jiang C; Zhu R; Kundaje A; Lu A; Weng Z
    Nucleic Acids Res; 2018 Nov; 46(21):11184-11201. PubMed ID: 30137428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive Recovery of Embryonic Enhancer and Gene Memory Stored in Hypomethylated Enhancer DNA.
    Jadhav U; Cavazza A; Banerjee KK; Xie H; O'Neill NK; Saenz-Vash V; Herbert Z; Madha S; Orkin SH; Zhai H; Shivdasani RA
    Mol Cell; 2019 May; 74(3):542-554.e5. PubMed ID: 30905509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells.
    Zhang T; Zhang Z; Dong Q; Xiong J; Zhu B
    Genome Biol; 2020 Feb; 21(1):45. PubMed ID: 32085783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Quantitative Mapping of Enhancers in Rice by STARR-seq.
    Sun J; He N; Niu L; Huang Y; Shen W; Zhang Y; Li L; Hou C
    Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):140-153. PubMed ID: 31201999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loci-specific histone acetylation profiles associated with transcriptional coactivator p300 during early myoblast differentiation.
    Khilji S; Hamed M; Chen J; Li Q
    Epigenetics; 2018; 13(6):642-654. PubMed ID: 29927685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenomic and Transcriptomic Dynamics During Human Heart Organogenesis.
    VanOudenhove J; Yankee TN; Wilderman A; Cotney J
    Circ Res; 2020 Oct; 127(9):e184-e209. PubMed ID: 32772801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.