BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25765309)

  • 1. Second generation engineering of transketolase for polar aromatic aldehyde substrates.
    Payongsri P; Steadman D; Hailes HC; Dalby PA
    Enzyme Microb Technol; 2015 Apr; 71():45-52. PubMed ID: 25765309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Analysis of an Evolved Transketolase Reveals Divergent Binding Modes.
    Affaticati PE; Dai SB; Payongsri P; Hailes HC; Tittmann K; Dalby PA
    Sci Rep; 2016 Oct; 6():35716. PubMed ID: 27767080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-tuning the activity and stability of an evolved enzyme active-site through noncanonical amino-acids.
    Wilkinson HC; Dalby PA
    FEBS J; 2021 Mar; 288(6):1935-1955. PubMed ID: 32897608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution of transketolase substrate specificity towards an aliphatic aldehyde.
    Hibbert EG; Senussi T; Smith ME; Costelloe SJ; Ward JM; Hailes HC; Dalby PA
    J Biotechnol; 2008 Apr; 134(3-4):240-5. PubMed ID: 18342970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational substrate and enzyme engineering of transketolase for aromatics.
    Payongsri P; Steadman D; Strafford J; MacMurray A; Hailes HC; Dalby PA
    Org Biomol Chem; 2012 Dec; 10(45):9021-9. PubMed ID: 23079923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution to re-adapt a co-evolved network within an enzyme.
    Strafford J; Payongsri P; Hibbert EG; Morris P; Batth SS; Steadman D; Smith ME; Ward JM; Hailes HC; Dalby PA
    J Biotechnol; 2012 Jan; 157(1):237-45. PubMed ID: 22154561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering transketolase to accept both unnatural donor and acceptor substrates and produce α-hydroxyketones.
    Yu H; Hernández López RI; Steadman D; Méndez-Sánchez D; Higson S; Cázares-Körner A; Sheppard TD; Ward JM; Hailes HC; Dalby PA
    FEBS J; 2020 May; 287(9):1758-1776. PubMed ID: 31647171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of cofactor-binding loop mutations on thermotolerance and activity of E. coli transketolase.
    Morris P; Rios-Solis L; García-Arrazola R; Lye GJ; Dalby PA
    Enzyme Microb Technol; 2016 Jul; 89():85-91. PubMed ID: 27233131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting correlated molecular-dynamics networks to counteract enzyme activity-stability trade-off.
    Yu H; Dalby PA
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):E12192-E12200. PubMed ID: 30530661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-alpha-hydroxylated aldehydes with evolved transketolase enzymes.
    Cázares A; Galman JL; Crago LG; Smith ME; Strafford J; Ríos-Solís L; Lye GJ; Dalby PA; Hailes HC
    Org Biomol Chem; 2010 Mar; 8(6):1301-9. PubMed ID: 20204200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the substrate scope of transketolase.
    Ranoux A; Karmee SK; Jin J; Bhaduri A; Caiazzo A; Arends IW; Hanefeld U
    Chembiochem; 2012 Sep; 13(13):1921-31. PubMed ID: 22821820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second-Generation Engineering of a Thermostable Transketolase (TK
    Zhou C; Saravanan T; Lorillière M; Wei D; Charmantray F; Hecquet L; Fessner WD; Yi D
    Chembiochem; 2017 Mar; 18(5):455-459. PubMed ID: 28005308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of thermostable aldehyde dehydrogenase by directed evolution for application in Synthetic Cascade Biomanufacturing.
    Steffler F; Guterl JK; Sieber V
    Enzyme Microb Technol; 2013 Oct; 53(5):307-14. PubMed ID: 24034429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-substrate enzyme engineering using small libraries that combine the substrate preferences from two different variant lineages.
    Mukhopadhyay A; Karu K; Dalby PA
    Sci Rep; 2024 Jan; 14(1):1287. PubMed ID: 38218974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α,α'-Dihydroxyketone formation using aromatic and heteroaromatic aldehydes with evolved transketolase enzymes.
    Galman JL; Steadman D; Bacon S; Morris P; Smith ME; Ward JM; Dalby PA; Hailes HC
    Chem Commun (Camb); 2010 Oct; 46(40):7608-10. PubMed ID: 20835425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of transketolase activity on non-phosphorylated substrates.
    Hibbert EG; Senussi T; Costelloe SJ; Lei W; Smith ME; Ward JM; Hailes HC; Dalby PA
    J Biotechnol; 2007 Sep; 131(4):425-32. PubMed ID: 17825449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate scope and selectivity in offspring to an enzyme subjected to directed evolution.
    Blikstad C; Dahlström KM; Salminen TA; Widersten M
    FEBS J; 2014 May; 281(10):2387-98. PubMed ID: 24673815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.
    Nauton L; Hélaine V; Théry V; Hecquet L
    Biochemistry; 2016 Apr; 55(14):2144-52. PubMed ID: 26998737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of catalytically important residues in yeast transketolase.
    Wikner C; Nilsson U; Meshalkina L; Udekwu C; Lindqvist Y; Schneider G
    Biochemistry; 1997 Dec; 36(50):15643-9. PubMed ID: 9398292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermostable transketolase evolved for aliphatic aldehyde acceptors.
    Yi D; Saravanan T; Devamani T; Charmantray F; Hecquet L; Fessner WD
    Chem Commun (Camb); 2015 Jan; 51(3):480-3. PubMed ID: 25415647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.