BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25765310)

  • 21. Immobilization of Candida antarctica A and Thermomyces lanuginosus lipases on cotton terry cloth fibrils using polyethyleneimine.
    Ondul E; Dizge N; Albayrak N
    Colloids Surf B Biointerfaces; 2012 Jun; 95():109-14. PubMed ID: 22421414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Desorption of Lipases Immobilized on Octyl-Agarose Beads and Coated with Ionic Polymers after Thermal Inactivation. Stronger Adsorption of Polymers/Unfolded Protein Composites.
    Virgen-Ortíz JJ; Pedrero SG; Fernandez-Lopez L; Lopez-Carrobles N; Gorines BC; Otero C; Fernandez-Lafuente R
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28067789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium.
    Fernandez-Lorente G; Palomo JM; Cabrera Z; Fernandez-Lafuente R; Guisán JM
    Biotechnol Bioeng; 2007 Jun; 97(2):242-50. PubMed ID: 17054124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity of Pseudomonas cepacia lipase in organic media is greatly enhanced after immobilization on a polypropylene support.
    Pencreac'h G; Baratti JC
    Appl Microbiol Biotechnol; 1997 Jun; 47(6):630-5. PubMed ID: 9237387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved enzymatic activity of Thermomyces lanuginosus lipase immobilized in a hydrophobic particulate mesoporous carrier.
    Sörensen MH; Ng JB; Bergström L; Alberius PC
    J Colloid Interface Sci; 2010 Mar; 343(1):359-65. PubMed ID: 20022021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions.
    Rodrigues RC; Virgen-Ortíz JJ; Dos Santos JCS; Berenguer-Murcia Á; Alcantara AR; Barbosa O; Ortiz C; Fernandez-Lafuente R
    Biotechnol Adv; 2019; 37(5):746-770. PubMed ID: 30974154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New applications of glyoxyl-octyl agarose in lipases co-immobilization: Strategies to reuse the most stable lipase.
    Arana-Peña S; Mendez-Sanchez C; Rios NS; Ortiz C; Gonçalves LRB; Fernandez-Lafuente R
    Int J Biol Macromol; 2019 Jun; 131():989-997. PubMed ID: 30917914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: Functional and florescence studies.
    Souza PMP; Carballares D; Lopez-Carrobles N; Gonçalves LRB; Lopez-Gallego F; Rodrigues S; Fernandez-Lafuente R
    Int J Biol Macromol; 2021 Nov; 191():79-91. PubMed ID: 34537296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dry entrapment of enzymes by epoxy or polyester resins hardened on different solid supports.
    Barig S; Funke A; Merseburg A; Schnitzlein K; Stahmann KP
    Enzyme Microb Technol; 2014 Jun; 60():47-55. PubMed ID: 24835099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors governing the activity of lyophilised and immobilised lipase preparations in organic solvents.
    Persson M; Wehtje E; Adlercreutz P
    Chembiochem; 2002 Jun; 3(6):566-71. PubMed ID: 12325013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving the thermostability and optimal temperature of a lipase from the hyperthermophilic archaeon Pyrococcus furiosus by covalent immobilization.
    Branco RV; Gutarra ML; Guisan JM; Freire DM; Almeida RV; Palomo JM
    Biomed Res Int; 2015; 2015():250532. PubMed ID: 25839031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose.
    Fernandez-Lorente G; Godoy CA; Mendes AA; Lopez-Gallego F; Grazu V; de Las Rivas B; Palomo JM; Hermoso J; Fernandez-Lafuente R; Guisan JM
    Biomacromolecules; 2008 Sep; 9(9):2553-61. PubMed ID: 18702542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrolysis of fish oil by hyperactivated Rhizomucor miehei lipase immobilized by multipoint anion exchange.
    Filice M; Marciello M; Betancor L; Carrascosa AV; Guisan JM; Fernandez-Lorente G
    Biotechnol Prog; 2011 Jul; 27(4):961-8. PubMed ID: 21574268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of styrene-divinylbenzene beads as a support to immobilize lipases.
    Garcia-Galan C; Barbosa O; Hernandez K; dos Santos JC; Rodrigues RC; Fernandez-Lafuente R
    Molecules; 2014 Jun; 19(6):7629-45. PubMed ID: 24918537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covalent binding of hyper-activated Rhizomucor miehei lipase (RML) on hetero-functionalized siliceous supports.
    Garmroodi M; Mohammadi M; Ramazani A; Ashjari M; Mohammadi J; Sabour B; Yousefi M
    Int J Biol Macromol; 2016 May; 86():208-15. PubMed ID: 26812114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of the Biocatalytic Properties of a Novel Lipase from Psychrophilic
    Ruiz M; Plata E; Castillo JJ; Ortiz CC; López G; Baena S; Torres R; Fernandez-Lafuente R
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33809323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stabilization of Candida antarctica Lipase B (CALB) Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI).
    Peirce S; Tacias-Pascacio VG; Russo ME; Marzocchella A; Virgen-Ortíz JJ; Fernandez-Lafuente R
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27338317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrolysis of triacetin catalyzed by immobilized lipases: effect of the immobilization protocol and experimental conditions on diacetin yield.
    Hernandez K; Garcia-Verdugo E; Porcar R; Fernandez-Lafuente R
    Enzyme Microb Technol; 2011 May; 48(6-7):510-7. PubMed ID: 22113024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly regioselective synthesis of 3'-O-acyl-trifluridines catalyzed by Pseudomonas cepacia lipase.
    Wang ZY; Bi YH; Zong MH
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1161-8. PubMed ID: 21822657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification of different lipases from Aspergillus niger by using a highly selective adsorption on hydrophobic supports.
    Fernández-Lorente G; Ortiz C; Segura RL; Fernández-Lafuente R; Guisán JM; Palomo JM
    Biotechnol Bioeng; 2005 Dec; 92(6):773-9. PubMed ID: 16155948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.