These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 25765329)
1. Transcriptome sequencing and analysis of the entomopathogenic fungus Hirsutella sinensis isolated from Ophiocordyceps sinensis. Liu ZQ; Lin S; Baker PJ; Wu LF; Wang XR; Wu H; Xu F; Wang HY; Brathwaite ME; Zheng YG BMC Genomics; 2015 Feb; 16(1):106. PubMed ID: 25765329 [TBL] [Abstract][Full Text] [Related]
2. Proteome sequencing and analysis of Ophiocordyceps sinensis at different culture periods. Zhang B; Li B; Men XH; Xu ZW; Wu H; Qin XT; Xu F; Teng Y; Yuan SJ; Jin LQ; Liu ZQ; Zheng YG BMC Genomics; 2020 Dec; 21(1):886. PubMed ID: 33308160 [TBL] [Abstract][Full Text] [Related]
3. Genome sequencing and analysis of fungus Hirsutella sinensis isolated from Ophiocordyceps sinensis. Jin LQ; Xu ZW; Zhang B; Yi M; Weng CY; Lin S; Wu H; Qin XT; Xu F; Teng Y; Yuan SJ; Liu ZQ; Zheng YG AMB Express; 2020 Jun; 10(1):105. PubMed ID: 32494871 [TBL] [Abstract][Full Text] [Related]
4. Profile of Ophiocordyceps sinensis transcriptome and differentially expressed genes in three different mycelia, sclerotium and fruiting body developmental stages. Zhong X; Gu L; Wang H; Lian D; Zheng Y; Zhou S; Zhou W; Gu J; Zhang G; Liu X Fungal Biol; 2018 Oct; 122(10):943-951. PubMed ID: 30227930 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis of Ophiocordyceps sinensis before and after infection of Thitarodes larvae. Zhong X; Gu L; Li SS; Kan XT; Zhang GR; Liu X Fungal Biol; 2016; 120(6-7):819-26. PubMed ID: 27268242 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome Analysis Reveals the Molecular Mechanisms Underlying Adenosine Biosynthesis in Anamorph Strain of Caterpillar Fungus. Lin S; Zou Z; Zhou C; Zhang H; Cai Z Biomed Res Int; 2019; 2019():1864168. PubMed ID: 31915684 [TBL] [Abstract][Full Text] [Related]
7. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. Shi CY; Yang H; Wei CL; Yu O; Zhang ZZ; Jiang CJ; Sun J; Li YY; Chen Q; Xia T; Wan XC BMC Genomics; 2011 Feb; 12():131. PubMed ID: 21356090 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial peptide repertoire of Thitarodes armoricanus, a host species of Ophiocordyceps sinensis, predicted based on de novo transcriptome sequencing and analysis. Wang M; Hu X Infect Genet Evol; 2017 Oct; 54():238-244. PubMed ID: 28705718 [TBL] [Abstract][Full Text] [Related]
9. The artificial cultivation of medicinal Caterpillar Fungus, Ophiocordyceps sinensis (Ascomycetes): a review. Yue K; Ye M; Lin X; Zhou Z Int J Med Mushrooms; 2013; 15(5):425-34. PubMed ID: 24266368 [TBL] [Abstract][Full Text] [Related]
10. High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside. Bi L; Guan CJ; Yang GE; Yang F; Yan HY; Li QS Microbiol Res; 2016 Apr; 185():1-12. PubMed ID: 26946373 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis of the Ophiocordyceps sinensis fruiting body reveals putative genes involved in fruiting body development and cordycepin biosynthesis. Xiang L; Li Y; Zhu Y; Luo H; Li C; Xu X; Sun C; Song J; Shi L; He L; Sun W; Chen S Genomics; 2014 Jan; 103(1):154-9. PubMed ID: 24440419 [TBL] [Abstract][Full Text] [Related]
12. De novo transcriptome analysis of Thitarodes jiachaensis before and after infection by the caterpillar fungus, Ophiocordyceps sinensis. Li S; Zhong X; Kan X; Gu L; Sun H; Zhang G; Liu X Gene; 2016 Apr; 580(2):96-103. PubMed ID: 26778205 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome characterization and gene expression analysis related to sexual dimorphism in the ghost moth, Thitarodes pui, a host of Ophiocordyceps sinensis. Guo J; Jiang F; Yi J; Liu X; Zhang G Gene; 2016 Aug; 588(2):134-40. PubMed ID: 27182053 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptome analysis revealed genes involved in the fruiting body development of Tong X; Zhang H; Wang F; Xue Z; Cao J; Peng C; Guo J PeerJ; 2020; 8():e8379. PubMed ID: 31988806 [No Abstract] [Full Text] [Related]
15. Differentially expressed genes in heads and tails of Angelica sinensis diels: Focusing on ferulic acid metabolism. Yang J; Li WH; An R; Wang YL; Xu Y; Chen J; Wang XF; Zhang XB; Li J; Ding WJ Chin J Integr Med; 2017 Oct; 23(10):779-785. PubMed ID: 27586474 [TBL] [Abstract][Full Text] [Related]
16. RNA-sequencing of the sturgeon Acipenser baeri provides insights into expression dynamics of morphogenic differentiation and developmental regulatory genes in early versus late developmental stages. Song W; Jiang K; Zhang F; Lin Y; Ma L BMC Genomics; 2016 Aug; 17():564. PubMed ID: 27502271 [TBL] [Abstract][Full Text] [Related]
17. Fruiting Body Production of the Medicinal Chinese Caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes), in Artificial Medium. Cao L; Ye Y; Han R Int J Med Mushrooms; 2015; 17(11):1107-12. PubMed ID: 26853966 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome profiling of fruit development and maturation in Chinese white pear (Pyrus bretschneideri Rehd). Xie M; Huang Y; Zhang Y; Wang X; Yang H; Yu O; Dai W; Fang C BMC Genomics; 2013 Nov; 14(1):823. PubMed ID: 24267665 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation. Ye W; Wu H; He X; Wang L; Zhang W; Li H; Fan Y; Tan G; Liu T; Gao X PLoS One; 2016; 11(5):e0155505. PubMed ID: 27182594 [TBL] [Abstract][Full Text] [Related]
20. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. Yu GJ; Wang M; Huang J; Yin YL; Chen YJ; Jiang S; Jin YX; Lan XQ; Wong BH; Liang Y; Sun H PLoS One; 2012; 7(8):e44031. PubMed ID: 22952861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]