BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25765518)

  • 1. Interaction of gas phase oxalic acid with ammonia and its atmospheric implications.
    Peng XQ; Liu YR; Huang T; Jiang S; Huang W
    Phys Chem Chem Phys; 2015 Apr; 17(14):9552-63. PubMed ID: 25765518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study on stable small clusters of oxalic acid with ammonia and water.
    Weber KH; Liu Q; Tao FM
    J Phys Chem A; 2014 Feb; 118(8):1451-68. PubMed ID: 24471486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of oxalic acid with methylamine and its atmospheric implications.
    Hong Y; Liu YR; Wen H; Miao SK; Huang T; Peng XQ; Jiang S; Feng YJ; Huang W
    RSC Adv; 2018 Feb; 8(13):7225-7234. PubMed ID: 35540338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study on the structure and stabilities of molecular clusters of oxalic acid with water.
    Weber KH; Morales FJ; Tao FM
    J Phys Chem A; 2012 Nov; 116(47):11601-17. PubMed ID: 23088395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of the hydration of atmospheric nucleation precursors with acetic acid.
    Zhu YP; Liu YR; Huang T; Jiang S; Xu KM; Wen H; Zhang WJ; Huang W
    J Phys Chem A; 2014 Sep; 118(36):7959-74. PubMed ID: 25143013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular understanding of the interaction of amino acids with sulfuric acid in the presence of water and the atmospheric implication.
    Ge P; Luo G; Luo Y; Huang W; Xie H; Chen J; Qu J
    Chemosphere; 2018 Nov; 210():215-223. PubMed ID: 30005342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of glycine with common atmospheric nucleation precursors.
    Elm J; Fard M; Bilde M; Mikkelsen KV
    J Phys Chem A; 2013 Dec; 117(48):12990-7. PubMed ID: 24191651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large hydrogen-bonded pre-nucleation (HSO4-)(H2SO4)m(H2O)k and (HSO4-)(NH3)(H2SO4)m(H2O)k clusters in the earth's atmosphere.
    Herb J; Xu Y; Yu F; Nadykto AB
    J Phys Chem A; 2013 Jan; 117(1):133-52. PubMed ID: 23136922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration of atmospherically relevant molecular clusters: computational chemistry and classical thermodynamics.
    Henschel H; Navarro JC; Yli-Juuti T; Kupiainen-Määttä O; Olenius T; Ortega IK; Clegg SL; Kurtén T; Riipinen I; Vehkamäki H
    J Phys Chem A; 2014 Apr; 118(14):2599-611. PubMed ID: 24678924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of ammonia in growth of atmospheric nanoclusters.
    Torpo L; Kurtén T; Vehkamäki H; Laasonen K; Sundberg MR; Kulmala M
    J Phys Chem A; 2007 Oct; 111(42):10671-4. PubMed ID: 17914768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth's Atmosphere. A Theoretical Study.
    Wang CY; Jiang S; Liu YR; Wen H; Wang ZQ; Han YJ; Huang T; Huang W
    J Phys Chem A; 2018 Apr; 122(13):3470-3479. PubMed ID: 29547296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential role of malonic acid in the atmospheric sulfuric acid - Ammonia clusters formation.
    Zhang H; Li H; Liu L; Zhang Y; Zhang X; Li Z
    Chemosphere; 2018 Jul; 203():26-33. PubMed ID: 29604427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-phase hydration of glyoxylic acid: Kinetics and atmospheric implications.
    Liu L; Zhang X; Li Z; Zhang Y; Ge M
    Chemosphere; 2017 Nov; 186():430-437. PubMed ID: 28802978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of the water adsorption around malonic acid aerosol models.
    Darvas M; Picaud S; Jedlovszky P
    Phys Chem Chem Phys; 2013 Jul; 15(26):10942-51. PubMed ID: 23702947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IR spectroscopy of physical and chemical transformations in cold hydrogen chloride and ammonia aerosols.
    Robertson EG; Medcraft C; Puskar L; Tuckermann R; Thompson CD; Bauerecker S; McNaughton D
    Phys Chem Chem Phys; 2009 Sep; 11(36):7853-60. PubMed ID: 19727492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of sulfuric acid with common atmospheric bases and organic acids: Thermodynamics and implications to new particle formation.
    Li Y; Zhang H; Zhang Q; Xu Y; Nadykto AB
    J Environ Sci (China); 2020 Sep; 95():130-140. PubMed ID: 32653172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ammonia on the volatility of organic diacids.
    Paciga AL; Riipinen I; Pandis SN
    Environ Sci Technol; 2014 Dec; 48(23):13769-75. PubMed ID: 25356879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.
    Tsona NT; Henschel H; Bork N; Loukonen V; Vehkamäki H
    J Phys Chem A; 2015 Sep; 119(37):9670-9. PubMed ID: 26304742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular-scale study on the hydration of sulfuric acid-amide complexes and the atmospheric implication.
    Ge P; Luo G; Luo Y; Huang W; Xie H; Chen J
    Chemosphere; 2018 Dec; 213():453-462. PubMed ID: 30245222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and growth of molecular clusters containing sulfuric acid, water, ammonia, and dimethylamine.
    DePalma JW; Doren DJ; Johnston MV
    J Phys Chem A; 2014 Jul; 118(29):5464-73. PubMed ID: 24963535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.