These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25765609)

  • 1. Deformation of wrinkled graphene.
    Li Z; Kinloch IA; Young RJ; Novoselov KS; Anagnostopoulos G; Parthenios J; Galiotis C; Papagelis K; Lu CY; Britnell L
    ACS Nano; 2015 Apr; 9(4):3917-25. PubMed ID: 25765609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of domain boundaries on the Raman spectra of mechanically strained graphene.
    Bissett MA; Izumida W; Saito R; Ago H
    ACS Nano; 2012 Nov; 6(11):10229-38. PubMed ID: 23039066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain Engineering in Highly Wrinkled CVD Graphene/Epoxy Systems.
    Anagnostopoulos G; Paterakis G; Polyzos I; Pappas PN; Kouroupis-Agalou K; Mirotta N; Scidà A; Palermo V; Parthenios J; Papagelis K; Galiotis C
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43192-43202. PubMed ID: 30406999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the reinforcement of polymer-based nanocomposites by graphene.
    Gong L; Young RJ; Kinloch IA; Riaz I; Jalil R; Novoselov KS
    ACS Nano; 2012 Mar; 6(3):2086-95. PubMed ID: 22364317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The strength of mechanically-exfoliated monolayer graphene deformed on a rigid polymer substrate.
    Zhao X; Papageorgiou DG; Zhu L; Ding F; Young RJ
    Nanoscale; 2019 Aug; 11(30):14339-14353. PubMed ID: 31328739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wrinkled Few-Layer Graphene as Highly Efficient Load Bearer.
    Androulidakis C; Koukaras EN; Rahova J; Sampathkumar K; Parthenios J; Papagelis K; Frank O; Galiotis C
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26593-26601. PubMed ID: 28722403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible loss of Bernal stacking during the deformation of few-layer graphene in nanocomposites.
    Gong L; Young RJ; Kinloch IA; Haigh SJ; Warner JH; Hinks JA; Xu Z; Li L; Ding F; Riaz I; Jalil R; Novoselov KS
    ACS Nano; 2013 Aug; 7(8):7287-94. PubMed ID: 23899378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic Friction of Wrinkled Graphene Grown by Chemical Vapor Deposition.
    Long F; Yasaei P; Yao W; Salehi-Khojin A; Shahbazian-Yassar R
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20922-20927. PubMed ID: 28513130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain Relaxation in CVD Graphene: Wrinkling with Shear Lag.
    Bronsgeest MS; Bendiab N; Mathur S; Kimouche A; Johnson HT; Coraux J; Pochet P
    Nano Lett; 2015 Aug; 15(8):5098-104. PubMed ID: 26171667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics.
    Li Y
    Soft Matter; 2016 Apr; 12(13):3202-13. PubMed ID: 26924574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-Based Materials as Strain Sensors in Glass Fiber/Epoxy Model Composites.
    Chu J; Marsden AJ; Young RJ; Bissett MA
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31338-31345. PubMed ID: 31381289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film.
    Ahmad M; An H; Kim YS; Lee JH; Jung J; Chun SH; Seo Y
    Nanotechnology; 2012 Jul; 23(28):285705. PubMed ID: 22728533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Stability of Flexible Graphene-Based Displays.
    Anagnostopoulos G; Pappas PN; Li Z; Kinloch IA; Young RJ; Novoselov KS; Lu CY; Pugno N; Parthenios J; Galiotis C; Papagelis K
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22605-14. PubMed ID: 27494211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial stress transfer in graphene oxide nanocomposites.
    Li Z; Young RJ; Kinloch IA
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):456-63. PubMed ID: 23286230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AFM and Raman study of graphene deposited on silicon surfaces nanostructured by ion beam irradiation.
    Dell'anna R; Iacob E; Tripathi M; Dalton A; BÖttger R; Pepponi G
    J Microsc; 2020 Dec; 280(3):183-193. PubMed ID: 32424808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman Study of Strain Relaxation from Grain Boundaries in Epitaxial Graphene Grown by Chemical Vapor Deposition on SiC.
    Chong L; Guo H; Zhang Y; Hu Y; Zhang Y
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30841583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser thinning for monolayer graphene formation: heat sink and interference effect.
    Han GH; Chae SJ; Kim ES; Güneş F; Lee IH; Lee SW; Lee SY; Lim SC; Jeong HK; Jeong MS; Lee YH
    ACS Nano; 2011 Jan; 5(1):263-8. PubMed ID: 21174409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gate dependent Raman spectroscopy of graphene on hexagonal boron nitride.
    Chattrakun K; Huang S; Watanabe K; Taniguchi T; Sandhu A; LeRoy BJ
    J Phys Condens Matter; 2013 Dec; 25(50):505304. PubMed ID: 24275340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable Fabrication of Large-Area Wrinkled Graphene on a Solution Surface.
    Chen W; Gui X; Liang B; Liu M; Lin Z; Zhu Y; Tang Z
    ACS Appl Mater Interfaces; 2016 May; 8(17):10977-84. PubMed ID: 27111911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-Physical Characterization of Chemical Vapor Deposition-Grown Monolayer Graphene for High Performance Electrode: Raman, Surface-Enhanced Raman Spectroscopy, and Electrostatic Force Microscopy Studies.
    Park WH
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.