These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 25765789)

  • 21. Clonal hematopoiesis and preleukemia-Genetics, biology, and clinical implications.
    Hartmann L; Metzeler KH
    Genes Chromosomes Cancer; 2019 Dec; 58(12):828-838. PubMed ID: 30939217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetics in focus: pathogenesis of myelodysplastic syndromes and the role of hypomethylating agents.
    Santini V; Melnick A; Maciejewski JP; Duprez E; Nervi C; Cocco L; Ford KG; Mufti G
    Crit Rev Oncol Hematol; 2013 Nov; 88(2):231-45. PubMed ID: 23838480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the potential role of DNMT1 in acute myeloid leukemia and myelodysplastic syndromes: not another mutated epigenetic driver.
    Benetatos L; Vartholomatos G
    Ann Hematol; 2016 Oct; 95(10):1571-82. PubMed ID: 26983918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical Implications of Genetic Mutations in Myelodysplastic Syndrome.
    Kennedy JA; Ebert BL
    J Clin Oncol; 2017 Mar; 35(9):968-974. PubMed ID: 28297619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Epidemiology of leukemia and MDS among atomic bomb survivors in Hiroshima and Nagasaki suggests how abnormal epigenetic regulation contributes to leukemogenesis].
    Inaba T
    Rinsho Ketsueki; 2009 Oct; 50(10):1548-52. PubMed ID: 19915365
    [No Abstract]   [Full Text] [Related]  

  • 26. Clonal evolution and hierarchy in myeloid malignancies.
    Takahashi K; Tanaka T
    Trends Cancer; 2023 Sep; 9(9):707-715. PubMed ID: 37302922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aberrant histone modifications induced by mutant ASXL1 in myeloid neoplasms.
    Asada S; Kitamura T
    Int J Hematol; 2019 Aug; 110(2):179-186. PubMed ID: 30515738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The epigenomics revolution in myelodysplasia: a clinico-pathological perspective.
    Tan PT; Wei AH
    Pathology; 2011 Oct; 43(6):536-46. PubMed ID: 21881538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms underlying the heterogeneity of myelodysplastic syndromes.
    Dussiau C; Fontenay M
    Exp Hematol; 2018 Feb; 58():17-26. PubMed ID: 29175473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How predictive is the finding of clonal hematopoiesis for the development of myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML)?
    Steensma DP
    Best Pract Res Clin Haematol; 2021 Dec; 34(4):101327. PubMed ID: 34865699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New Insights into the Pathogenesis of MDS and the rational therapeutic opportunities.
    Abou Zahr A; Bernabe Ramirez C; Wozney J; Prebet T; Zeidan AM
    Expert Rev Hematol; 2016; 9(4):377-88. PubMed ID: 26734762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetics of MDS.
    Ogawa S
    Blood; 2019 Mar; 133(10):1049-1059. PubMed ID: 30670442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FLT3 internal tandem duplication during myelodysplastic syndrome follow-up: a marker of transformation to acute myeloid leukemia.
    Pinheiro RF; de Sá Moreira E; Silva MR; Alberto FL; Chauffaille Mde L
    Cancer Genet Cytogenet; 2008 Jun; 183(2):89-93. PubMed ID: 18503825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Innate immune signaling in the myelodysplastic syndromes.
    Starczynowski DT; Karsan A
    Hematol Oncol Clin North Am; 2010 Apr; 24(2):343-59. PubMed ID: 20359630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes.
    Benetatos L; Vartholomatos G
    Cell Mol Life Sci; 2018 Jun; 75(11):1999-2009. PubMed ID: 29484447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Pathophysiology of hematological malignancies associated with ASXL1 mutations].
    Fujino T
    Rinsho Ketsueki; 2022; 63(6):561-572. PubMed ID: 35831189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computing cell state discriminates the aberrant hematopoiesis and activated microenvironment in Myelodysplastic syndrome (MDS) through a single cell genomic study.
    Guo X; Jin W; Wen Y; Wang Z; Ren X; Liu Z; Fu R; Cai Z; Li L
    J Transl Med; 2024 Jul; 22(1):673. PubMed ID: 39033303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular bases of myelodysplastic syndromes: lessons from animal models.
    Komeno Y; Kitaura J; Kitamura T
    J Cell Physiol; 2009 Jun; 219(3):529-34. PubMed ID: 19259975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clonality studies and N-ras and p53 mutation analysis of hematopoietic cells in Fanconi anemia.
    Venkatraj VS; Gaidano G; Auerbach AD
    Leukemia; 1994 Aug; 8(8):1354-8. PubMed ID: 8057673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions-a review.
    Bernasconi P
    Br J Haematol; 2008 Sep; 142(5):695-708. PubMed ID: 18540941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.