BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25766122)

  • 1. Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress.
    Frey FP; Urbany C; Hüttel B; Reinhardt R; Stich B
    BMC Genomics; 2015 Feb; 16(1):123. PubMed ID: 25766122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.
    Qian Y; Ren Q; Zhang J; Chen L
    Gene; 2019 Apr; 692():68-78. PubMed ID: 30641208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress.
    Shi J; Yan B; Lou X; Ma H; Ruan S
    BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First steps to understand heat tolerance of temperate maize at adult stage: identification of QTL across multiple environments with connected segregating populations.
    Frey FP; Presterl T; Lecoq P; Orlik A; Stich B
    Theor Appl Genet; 2016 May; 129(5):945-61. PubMed ID: 26886101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.
    Qian Y; Hu W; Liao J; Zhang J; Ren Q
    Biochem Biophys Res Commun; 2019 May; 512(4):742-749. PubMed ID: 30926168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses.
    Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic Changes are Associated with Programmed Cell Death Induced by Heat Stress in Seedling Leaves of Zea mays.
    Wang P; Zhao L; Hou H; Zhang H; Huang Y; Wang Y; Li H; Gao F; Yan S; Li L
    Plant Cell Physiol; 2015 May; 56(5):965-76. PubMed ID: 25670712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize.
    Campbell MT; Proctor CA; Dou Y; Schmitz AJ; Phansak P; Kruger GR; Zhang C; Walia H
    PLoS One; 2015; 10(3):e0120385. PubMed ID: 25806518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural variation for gene expression responses to abiotic stress in maize.
    Waters AJ; Makarevitch I; Noshay J; Burghardt LT; Hirsch CN; Hirsch CD; Springer NM
    Plant J; 2017 Feb; 89(4):706-717. PubMed ID: 28188666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive study of the genomic differentiation between temperate Dent and Flint maize.
    Unterseer S; Pophaly SD; Peis R; Westermeier P; Mayer M; Seidel MA; Haberer G; Mayer KF; Ordas B; Pausch H; Tellier A; Bauer E; Schön CC
    Genome Biol; 2016 Jul; 17(1):137. PubMed ID: 27387028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development.
    Momcilovic I; Ristic Z
    J Plant Physiol; 2007 Jan; 164(1):90-9. PubMed ID: 16542752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic diversity in seedling roots of European flint maize in response to cold.
    Frey FP; Pitz M; Schön CC; Hochholdinger F
    BMC Genomics; 2020 Apr; 21(1):300. PubMed ID: 32293268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings.
    Mao H; Wang H; Liu S; Li Z; Yang X; Yan J; Li J; Tran LS; Qin F
    Nat Commun; 2015 Sep; 6():8326. PubMed ID: 26387805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptome analysis reveals important roles of nonadditive genes in maize hybrid An'nong 591 under heat stress.
    Zhao Y; Hu F; Zhang X; Wei Q; Dong J; Bo C; Cheng B; Ma Q
    BMC Plant Biol; 2019 Jun; 19(1):273. PubMed ID: 31234785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize.
    Inghelandt DV; Frey FP; Ries D; Stich B
    Sci Rep; 2019 Oct; 9(1):14418. PubMed ID: 31594984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Association Study of 13 Traits in Maize Seedlings under Low Phosphorus Stress.
    Wang QJ; Yuan Y; Liao Z; Jiang Y; Wang Q; Zhang L; Gao S; Wu F; Li M; Xie W; Liu T; Xu J; Liu Y; Feng X; Lu Y
    Plant Genome; 2019 Nov; 12(3):1-13. PubMed ID: 33016582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative protein analysis of two maize genotypes with contrasting tolerance to low temperature.
    Ramazan S; Jan N; John R
    BMC Plant Biol; 2023 Apr; 23(1):183. PubMed ID: 37020183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat-resistant protein expression during germination of maize seeds under water stress.
    Abreu VM; Silva Neta IC; Von Pinho EV; Naves GM; Guimarães RM; Santos HO; Von Pinho RG
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27525950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels.
    Yu T; Zhang J; Cao J; Cai Q; Li X; Sun Y; Li S; Li Y; Hu G; Cao S; Liu C; Wang G; Wang L; Duan Y
    Genomics; 2021 Mar; 113(2):782-794. PubMed ID: 33516847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses.
    Feng S; Yue R; Tao S; Yang Y; Zhang L; Xu M; Wang H; Shen C
    J Integr Plant Biol; 2015 Sep; 57(9):783-95. PubMed ID: 25557253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.