BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25766255)

  • 1. FGF22 signaling regulates synapse formation during post-injury remodeling of the spinal cord.
    Jacobi A; Loy K; Schmalz AM; Hellsten M; Umemori H; Kerschensteiner M; Bareyre FM
    EMBO J; 2015 May; 34(9):1231-43. PubMed ID: 25766255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis.
    Dabrowski A; Terauchi A; Strong C; Umemori H
    Development; 2015 May; 142(10):1818-30. PubMed ID: 25926357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptogenic gene therapy with FGF22 improves circuit plasticity and functional recovery following spinal cord injury.
    Aljović A; Jacobi A; Marcantoni M; Kagerer F; Loy K; Kendirli A; Bräutigam J; Fabbio L; Van Steenbergen V; Pleśniar K; Kerschensteiner M; Bareyre FM
    EMBO Mol Med; 2023 Feb; 15(2):e16111. PubMed ID: 36601738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AAV-KLF7 Promotes Descending Propriospinal Neuron Axonal Plasticity after Spinal Cord Injury.
    Li WY; Wang Y; Zhai FG; Sun P; Cheng YX; Deng LX; Wang ZY
    Neural Plast; 2017; 2017():1621629. PubMed ID: 28884027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticospinal circuit remodeling after central nervous system injury is dependent on neuronal activity.
    Bradley PM; Denecke CK; Aljovic A; Schmalz A; Kerschensteiner M; Bareyre FM
    J Exp Med; 2019 Nov; 216(11):2503-2514. PubMed ID: 31391209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord.
    Jacobi A; Schmalz A; Bareyre FM
    PLoS One; 2014; 9(2):e88449. PubMed ID: 24523897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synapse formation of the cortico-spinal axons is enhanced by RGMa inhibition after spinal cord injury.
    Kyoto A; Hata K; Yamashita T
    Brain Res; 2007 Dec; 1186():74-86. PubMed ID: 17996222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.
    Bareyre FM; Kerschensteiner M; Raineteau O; Mettenleiter TC; Weinmann O; Schwab ME
    Nat Neurosci; 2004 Mar; 7(3):269-77. PubMed ID: 14966523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic Interrogation of Functional Synapse Formation by Corticospinal Tract Axons in the Injured Spinal Cord.
    Jayaprakash N; Wang Z; Hoeynck B; Krueger N; Kramer A; Balle E; Wheeler DS; Wheeler RA; Blackmore MG
    J Neurosci; 2016 May; 36(21):5877-90. PubMed ID: 27225775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single collateral reconstructions reveal distinct phases of corticospinal remodeling after spinal cord injury.
    Lang C; Guo X; Kerschensteiner M; Bareyre FM
    PLoS One; 2012; 7(1):e30461. PubMed ID: 22291960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuropilin-1-mediated pruning of corticospinal tract fibers is required for motor recovery after spinal cord injury.
    Nakanishi T; Fujita Y; Yamashita T
    Cell Death Dis; 2019 Jan; 10(2):67. PubMed ID: 30683854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth.
    Quintá HR; Wilson C; Blidner AG; González-Billault C; Pasquini LA; Rabinovich GA; Pasquini JM
    Exp Neurol; 2016 Sep; 283(Pt A):165-78. PubMed ID: 27296316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury.
    Joshi Y; Sória MG; Quadrato G; Inak G; Zhou L; Hervera A; Rathore KI; Elnaggar M; Cucchiarini M; Marine JC; Puttagunta R; Di Giovanni S
    Brain; 2015 Jul; 138(Pt 7):1843-62. PubMed ID: 25981963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.
    Weishaupt N; Mason AL; Hurd C; May Z; Zmyslowski DC; Galleguillos D; Sipione S; Fouad K
    Neuroscience; 2014 Jul; 272():65-75. PubMed ID: 24814724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7.
    Terauchi A; Timmons KM; Kikuma K; Pechmann Y; Kneussel M; Umemori H
    J Cell Sci; 2015 Jan; 128(2):281-92. PubMed ID: 25431136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA
    Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodelling of spared proprioceptive circuit involving a small number of neurons supports functional recovery.
    Hollis ER; Ishiko N; Pessian M; Tolentino K; Lee-Kubli CA; Calcutt NA; Zou Y
    Nat Commun; 2015 Jan; 6():6079. PubMed ID: 25597627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury.
    Roonprapunt C; Huang W; Grill R; Friedlander D; Grumet M; Chen S; Schachner M; Young W
    J Neurotrauma; 2003 Sep; 20(9):871-82. PubMed ID: 14577865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.