BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25766255)

  • 21. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury.
    Zou Y; Stagi M; Wang X; Yigitkanli K; Siegel CS; Nakatsu F; Cafferty WB; Strittmatter SM
    J Neurosci; 2015 Jul; 35(29):10429-39. PubMed ID: 26203138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression.
    Namsolleck P; Boato F; Schwengel K; Paulis L; Matho KS; Geurts N; Thöne-Reineke C; Lucht K; Seidel K; Hallberg A; Dahlöf B; Unger T; Hendrix S; Steckelings UM
    Neurobiol Dis; 2013 Mar; 51():177-91. PubMed ID: 23174180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ameliorative Effects of p75NTR-ED-Fc on Axonal Regeneration and Functional Recovery in Spinal Cord-Injured Rats.
    Wang YT; Lu XM; Zhu F; Huang P; Yu Y; Long ZY; Wu YM
    Mol Neurobiol; 2015 Dec; 52(3):1821-1834. PubMed ID: 25394381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transgenic overexpression of the cell adhesion molecule L1 in neurons facilitates recovery after mouse spinal cord injury.
    Jakovcevski I; Djogo N; Hölters LS; Szpotowicz E; Schachner M
    Neuroscience; 2013 Nov; 252():1-12. PubMed ID: 23933311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TLR4 Deficiency Impairs Oligodendrocyte Formation in the Injured Spinal Cord.
    Church JS; Kigerl KA; Lerch JK; Popovich PG; McTigue DM
    J Neurosci; 2016 Jun; 36(23):6352-64. PubMed ID: 27277810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury.
    Zörner B; Bachmann LC; Filli L; Kapitza S; Gullo M; Bolliger M; Starkey ML; Röthlisberger M; Gonzenbach RR; Schwab ME
    Brain; 2014 Jun; 137(Pt 6):1716-32. PubMed ID: 24736305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determinants of Axon Growth, Plasticity, and Regeneration in the Context of Spinal Cord Injury.
    Filous AR; Schwab JM
    Am J Pathol; 2018 Jan; 188(1):53-62. PubMed ID: 29030051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of growth factors and soluble Nogo-66 receptor protein on transplanted neural stem/progenitor survival and axonal regeneration after complete transection of rat spinal cord.
    Guo X; Zahir T; Mothe A; Shoichet MS; Morshead CM; Katayama Y; Tator CH
    Cell Transplant; 2012; 21(6):1177-97. PubMed ID: 22236767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Function of FGFR1 Signalling in the Spinal Cord: Therapeutic Approaches Using FGFR1 Ligands after Spinal Cord Injury.
    Haenzi B; Moon LD
    Neural Plast; 2017; 2017():2740768. PubMed ID: 28197342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptic rearrangement following axonal injury: Old and new players.
    Spejo AB; Oliveira AL
    Neuropharmacology; 2015 Sep; 96(Pt A):113-23. PubMed ID: 25445484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury.
    Weidner N; Ner A; Salimi N; Tuszynski MH
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3513-8. PubMed ID: 11248109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of the Fibroblast Growth Factor Receptor 1 (FGFR1) in a Model of Spinal Cord Injury in Rats.
    Haenzi B; Gers-Barlag K; Akhoundzadeh H; Hutson TH; Menezes SC; Bunge MB; Moon LD
    PLoS One; 2016; 11(3):e0150541. PubMed ID: 27015635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord.
    Scott AL; Ramer MS
    Brain; 2010 Feb; 133(Pt 2):421-32. PubMed ID: 20047901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery.
    Wang Z; Reynolds A; Kirry A; Nienhaus C; Blackmore MG
    J Neurosci; 2015 Feb; 35(7):3139-45. PubMed ID: 25698749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regenerating and sprouting axons differ in their requirements for growth after injury.
    Bernstein-Goral H; Diener PS; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):51-72. PubMed ID: 9398450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain.
    Terauchi A; Johnson-Venkatesh EM; Bullock B; Lehtinen MK; Umemori H
    Elife; 2016 Apr; 5():. PubMed ID: 27083047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain.
    Umemori H; Linhoff MW; Ornitz DM; Sanes JR
    Cell; 2004 Jul; 118(2):257-70. PubMed ID: 15260994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury.
    Li P; Teng ZQ; Liu CM
    Neural Plast; 2016; 2016():1279051. PubMed ID: 27818801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FGFBP1-mediated crosstalk between fibroblasts and pancreatic cancer cells via FGF22/FGFR2 promotes invasion and metastasis of pancreatic cancer.
    Zhang Z; Qin Y; Ji S; Xu W; Liu M; Hu Q; Ye Z; Fan G; Yu X; Liu W; Xu X
    Acta Biochim Biophys Sin (Shanghai); 2021 Jul; 53(8):997-1008. PubMed ID: 34117747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasticity in the injured spinal cord: can we use it to advantage to reestablish effective bladder voiding and continence?
    Zinck ND; Downie JW
    Prog Brain Res; 2006; 152():147-62. PubMed ID: 16198699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.