These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3038 related articles for article (PubMed ID: 25766616)

  • 1. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.
    Ciechanover A; Kwon YT
    Exp Mol Med; 2015 Mar; 47(3):e147. PubMed ID: 25766616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence Linking Protein Misfolding to Quality Control in Progressive Neurodegenerative Diseases.
    Kabir MT; Uddin MS; Abdeen A; Ashraf GM; Perveen A; Hafeez A; Bin-Jumah MN; Abdel-Daim MM
    Curr Top Med Chem; 2020; 20(23):2025-2043. PubMed ID: 32552649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications.
    Williams A; Jahreiss L; Sarkar S; Saiki S; Menzies FM; Ravikumar B; Rubinsztein DC
    Curr Top Dev Biol; 2006; 76():89-101. PubMed ID: 17118264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking the tightrope: proteostasis and neurodegenerative disease.
    Yerbury JJ; Ooi L; Dillin A; Saunders DN; Hatters DM; Beart PM; Cashman NR; Wilson MR; Ecroyd H
    J Neurochem; 2016 May; 137(4):489-505. PubMed ID: 26872075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Quality Control by Molecular Chaperones in Neurodegeneration.
    Ciechanover A; Kwon YT
    Front Neurosci; 2017; 11():185. PubMed ID: 28428740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin.
    Maiti P; Manna J; Veleri S; Frautschy S
    Biomed Res Int; 2014; 2014():495091. PubMed ID: 25386560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physico-Pathologic Mechanisms Involved in Neurodegeneration: Misfolded Protein-Plasma Membrane Interactions.
    Shrivastava AN; Aperia A; Melki R; Triller A
    Neuron; 2017 Jul; 95(1):33-50. PubMed ID: 28683268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA).
    Ho PW; Leung CT; Liu H; Pang SY; Lam CS; Xian J; Li L; Kung MH; Ramsden DB; Ho SL
    Autophagy; 2020 Feb; 16(2):347-370. PubMed ID: 30983487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders.
    Choonara YE; Pillay V; Du Toit LC; Modi G; Naidoo D; Ndesendo VMK; Sibambo SR
    Int J Mol Sci; 2009 Jun; 10(6):2510-2557. PubMed ID: 19582217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A Therapeutic Target for Inhibition of Neurodegeneration: Autophagy].
    Pupyshev AB; Korolenko TA; Tikhonova MA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2016 Sep; 66(5):515-540. PubMed ID: 30695399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing therapeutics for the diseases of protein misfolding.
    May BC; Govaerts C; Cohen FE
    Neurology; 2006 Jan; 66(2 Suppl 1):S118-22. PubMed ID: 16432139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clearance of mutant proteins as a therapeutic target in neurodegenerative diseases.
    Krainc D
    Arch Neurol; 2010 Apr; 67(4):388-92. PubMed ID: 20385902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alzheimer's disease and the autophagic-lysosomal system.
    Chung KM; Hernández N; Sproul AA; Yu WH
    Neurosci Lett; 2019 Apr; 697():49-58. PubMed ID: 29758300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquitin, Autophagy and Neurodegenerative Diseases.
    Watanabe Y; Taguchi K; Tanaka M
    Cells; 2020 Sep; 9(9):. PubMed ID: 32887381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein quality control in neurodegenerative disease.
    Gestwicki JE; Garza D
    Prog Mol Biol Transl Sci; 2012; 107():327-53. PubMed ID: 22482455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of protein clearance mechanisms in organismal ageing and age-related diseases.
    Vilchez D; Saez I; Dillin A
    Nat Commun; 2014 Dec; 5():5659. PubMed ID: 25482515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of yeast to studying amyloid and prion diseases.
    Chernoff YO; Grizel AV; Rubel AA; Zelinsky AA; Chandramowlishwaran P; Chernova TA
    Adv Genet; 2020; 105():293-380. PubMed ID: 32560789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins.
    Marrero-Winkens C; Sankaran C; Schätzl HM
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32927676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein degradation pathways in Parkinson's disease: curse or blessing.
    Ebrahimi-Fakhari D; Wahlster L; McLean PJ
    Acta Neuropathol; 2012 Aug; 124(2):153-72. PubMed ID: 22744791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities.
    Schmidt MF; Gan ZY; Komander D; Dewson G
    Cell Death Differ; 2021 Feb; 28(2):570-590. PubMed ID: 33414510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 152.