These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 25766869)

  • 1. Manual assembly of nanocrystals for enhanced photoelectrochemical efficiency of hematite film.
    Cha HG; Kang MJ; Hwang IC; Kim H; Yoon KB; Kang YS
    Chem Commun (Camb); 2015 Apr; 51(29):6407-10. PubMed ID: 25766869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature.
    Cho ES; Kang MJ; Kang YS
    Phys Chem Chem Phys; 2015 Jun; 17(24):16145-50. PubMed ID: 26032403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.
    Fu L; Yu H; Li Y; Zhang C; Wang X; Shao Z; Yi B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4284-90. PubMed ID: 24451918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting.
    Gonçalves RH; Lima BH; Leite ER
    J Am Chem Soc; 2011 Apr; 133(15):6012-9. PubMed ID: 21443221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.
    Shen S; Guo P; Wheeler DA; Jiang J; Lindley SA; Kronawitter CX; Zhang JZ; Guo L; Mao SS
    Nanoscale; 2013 Oct; 5(20):9867-74. PubMed ID: 23974247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.
    Sun Y; Chemelewski WD; Berglund SP; Li C; He H; Shi G; Mullins CB
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5494-9. PubMed ID: 24665964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-Narrow Depletion Layers in a Hematite Mesocrystal-Based Photoanode for Boosting Multihole Water Oxidation.
    Zhang Z; Nagashima H; Tachikawa T
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):9047-9054. PubMed ID: 32173995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Templating Sol-Gel Hematite Films with Sacrificial Copper Oxide: Enhancing Photoanode Performance with Nanostructure and Oxygen Vacancies.
    Li Y; Guijarro N; Zhang X; Prévot MS; Jeanbourquin XA; Sivula K; Chen H; Li Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16999-7007. PubMed ID: 26186065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Photoelectrochemical Oxygen Evolution Reaction Ability of Iron-Derived Hematite Photoanode with Titanium Modification.
    Qiu W; Huang Y; Long B; Li H; Tong Y; Ji H
    Chemistry; 2015 Dec; 21(52):19250-6. PubMed ID: 26558337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese.
    Gurudayal ; Chiam SY; Kumar MH; Bassi PS; Seng HL; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5852-9. PubMed ID: 24702963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach.
    Sivula K; Zboril R; Le Formal F; Robert R; Weidenkaff A; Tucek J; Frydrych J; Grätzel M
    J Am Chem Soc; 2010 Jun; 132(21):7436-44. PubMed ID: 20443599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the water splitting efficiency of Sn-doped hematite nanoflakes by flame annealing.
    Wang L; Lee CY; Mazare A; Lee K; Müller J; Spiecker E; Schmuki P
    Chemistry; 2014 Jan; 20(1):77-82. PubMed ID: 24338769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axis-oriented, continuous anatase titania films with exposed reactive {100} facets.
    Van TK; Nguyen CK; Kang YS
    Chemistry; 2013 Jul; 19(28):9376-80. PubMed ID: 23733736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loading the FeNiOOH cocatalyst on Pt-modified hematite nanostructures for efficient solar water oxidation.
    Deng J; Lv X; Zhang H; Zhao B; Sun X; Zhong J
    Phys Chem Chem Phys; 2016 Apr; 18(15):10453-8. PubMed ID: 27029763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A scalable colloidal approach to prepare hematite films for efficient solar water splitting.
    Zong X; Thaweesak S; Xu H; Xing Z; Zou J; Lu GM; Wang L
    Phys Chem Chem Phys; 2013 Aug; 15(29):12314-21. PubMed ID: 23778329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical ZnO nanowires array.
    Kim H; Yong K
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13258-64. PubMed ID: 24274430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin-Layer Fe2TiO5 on Hematite for Efficient Solar Water Oxidation.
    Deng J; Lv X; Liu J; Zhang H; Nie K; Hong C; Wang J; Sun X; Zhong J; Lee ST
    ACS Nano; 2015 May; 9(5):5348-56. PubMed ID: 25885275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.