BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25766999)

  • 21. Defect annihilation at grain boundaries in alpha-Fe.
    Chen D; Wang J; Chen T; Shao L
    Sci Rep; 2013; 3():1450. PubMed ID: 23519086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistical physics of grain-boundary engineering.
    McGarrity ES; Duxbury PM; Holm EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026102. PubMed ID: 15783373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual Beam In Situ Radiation Studies of Nanocrystalline Cu.
    Fan C; Shang Z; Niu T; Li J; Wang H; Zhang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Dynamics Calculations of Grain Boundary Mobility in CdTe.
    Aguirre R; Abdullah S; Zhou X; Zubia D
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments.
    El-Atwani O; Hinks JA; Greaves G; Gonderman S; Qiu T; Efe M; Allain JP
    Sci Rep; 2014 May; 4():4716. PubMed ID: 24796578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Grain boundary dynamics driven by magnetically induced circulation at the void interface of 2D colloidal crystals.
    Lobmeyer DM; Biswal SL
    Sci Adv; 2022 Jun; 8(22):eabn5715. PubMed ID: 35658046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Multiple Roles of Small-Angle Tilt Grain Boundaries in Annihilating Radiation Damage in SiC.
    Jiang H; Wang X; Szlufarska I
    Sci Rep; 2017 Feb; 7():42358. PubMed ID: 28181488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic-scale quantification of grain boundary segregation in nanocrystalline material.
    Herbig M; Raabe D; Li YJ; Choi P; Zaefferer S; Goto S
    Phys Rev Lett; 2014 Mar; 112(12):126103. PubMed ID: 24724663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new approach to grain boundary engineering for nanocrystalline materials.
    Kobayashi S; Tsurekawa S; Watanabe T
    Beilstein J Nanotechnol; 2016; 7():1829-1849. PubMed ID: 28144533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning determination of atomic dynamics at grain boundaries.
    Sharp TA; Thomas SL; Cubuk ED; Schoenholz SS; Srolovitz DJ; Liu AJ
    Proc Natl Acad Sci U S A; 2018 Oct; 115(43):10943-10947. PubMed ID: 30301794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten.
    Cunningham WS; Gentile JM; El-Atwani O; Taylor CN; Efe M; Maloy SA; Trelewicz JR
    Sci Rep; 2018 Feb; 8(1):2897. PubMed ID: 29440652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dislocation-controlled formation and kinetics of grain boundary loops in two-dimensional crystals.
    Lavergne FA; Curran A; Aarts DGAL; Dullens RPA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6922-6927. PubMed ID: 29915026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chevron defect at the intersection of grain boundaries with free surfaces in Au.
    Radetic T; Lançon F; Dahmen U
    Phys Rev Lett; 2002 Aug; 89(8):085502. PubMed ID: 12190479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic structure and electronic properties of MgO grain boundaries in tunnelling magnetoresistive devices.
    Bean JJ; Saito M; Fukami S; Sato H; Ikeda S; Ohno H; Ikuhara Y; McKenna KP
    Sci Rep; 2017 Apr; 7():45594. PubMed ID: 28374755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conserved atomic bonding sequences and strain organization of graphene grain boundaries.
    Rasool HI; Ophus C; Zhang Z; Crommie MF; Yakobson BI; Zettl A
    Nano Lett; 2014 Dec; 14(12):7057-63. PubMed ID: 25375022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlating the Local Defect-Level Density with the Macroscopic Composition and Energetics of Chalcopyrite Thin-Film Surfaces.
    Bröker S; Kück D; Timmer A; Lauermann I; Ümsür B; Greiner D; Kaufmann CA; Mönig H
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13062-72. PubMed ID: 26010380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linear grain growth kinetics and rotation in nanocrystalline Ni.
    Farkas D; Mohanty S; Monk J
    Phys Rev Lett; 2007 Apr; 98(16):165502. PubMed ID: 17501428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement in tribological properties by modification of grain boundary and microstructure of ultrananocrystalline diamond films.
    Sankaran KJ; Kumar N; Kurian J; Ramadoss R; Chen HC; Dash S; Tyagi AK; Lee CY; Tai NH; Lin IN
    ACS Appl Mater Interfaces; 2013 May; 5(9):3614-24. PubMed ID: 23581966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting phase behavior of grain boundaries with evolutionary search and machine learning.
    Zhu Q; Samanta A; Li B; Rudd RE; Frolov T
    Nat Commun; 2018 Feb; 9(1):467. PubMed ID: 29391453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Grain-Boundary-Induced Drastic Sensing Performance Enhancement of Polycrystalline-Microwire Printed Gas Sensors.
    Wang L; Chen S; Li W; Wang K; Lou Z; Shen G
    Adv Mater; 2019 Jan; 31(4):e1804583. PubMed ID: 30484929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.