BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25767105)

  • 1. Linker dependence of interfacial electron transfer rates in Fe(II)-polypyridine sensitized solar cells.
    Bowman DN; Mukherjee S; Barnes LJ; Jakubikova E
    J Phys Condens Matter; 2015 Apr; 27(13):134205. PubMed ID: 25767105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe(II)-Polypyridines as Chromophores in Dye-Sensitized Solar Cells: A Computational Perspective.
    Jakubikova E; Bowman DN
    Acc Chem Res; 2015 May; 48(5):1441-9. PubMed ID: 25919490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating band-selective sensitization in iron(II) polypyridine-TiO2 assemblies.
    Bowman DN; Blew JH; Tsuchiya T; Jakubikova E
    Inorg Chem; 2013 Aug; 52(15):8621-8. PubMed ID: 23837840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclometalated Fe(II) complexes as sensitizers in dye-sensitized solar cells.
    Mukherjee S; Bowman DN; Jakubikova E
    Inorg Chem; 2015 Jan; 54(2):560-9. PubMed ID: 25531506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial electron transfer in TiO(2) surfaces sensitized with Ru(II)-polypyridine complexes.
    Jakubikova E; Snoeberger RC; Batista VS; Martin RL; Batista ER
    J Phys Chem A; 2009 Nov; 113(45):12532-40. PubMed ID: 19594155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Interfacial Electron Transfer Efficiency in [Fe(ctpy)
    Mukherjee S; Liu C; Jakubikova E
    J Phys Chem A; 2018 Feb; 122(7):1821-1830. PubMed ID: 29369631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-step model for ultrafast interfacial electron transfer: limitations of Fermi's golden rule revealed by quantum dynamics simulations.
    Liu C; Jakubikova E
    Chem Sci; 2017 Sep; 8(9):5979-5991. PubMed ID: 28989628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-to-Ligand Charge-Transfer Spectrum of a Ru-Bipyridine-Sensitized TiO
    Martirez JMP; Carter EA
    J Phys Chem A; 2021 Jun; 125(23):4998-5013. PubMed ID: 34077662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anchoring groups for dye-sensitized solar cells.
    Zhang L; Cole JM
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3427-55. PubMed ID: 25594514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spacer and anchor effects on the electronic coupling in ruthenium-bis-terpyridine dye-sensitized TiO2 nanocrystals studied by DFT.
    Lundqvist MJ; Nilsing M; Lunell S; Akermark B; Persson P
    J Phys Chem B; 2006 Oct; 110(41):20513-25. PubMed ID: 17034238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of triphenylamine dye/titanium dioxide interface for dye-sensitized solar cells.
    Fan W; Tan D; Deng W
    Phys Chem Chem Phys; 2011 Sep; 13(36):16159-67. PubMed ID: 21837323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structures and absorption properties of three kinds of ruthenium dye sensitizers containing bipyridine-pyrazolate for solar cells.
    Zhang CR; Liu ZJ; Sun YT; Shen YL; Chen YH; Liu YJ; Wang W; Zhang HM
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1843-8. PubMed ID: 21684807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast interfacial charge transfer from the LUMO+1 in ruthenium(ii) polypyridyl quinoxaline-sensitized solar cells.
    Shahroosvand H; Eskandari M
    Dalton Trans; 2018 Jan; 47(2):561-576. PubMed ID: 29239438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring copper(I)-based dye-sensitized solar cells: a complementary experimental and TD-DFT investigation.
    Bozic-Weber B; Chaurin V; Constable EC; Housecroft CE; Meuwly M; Neuburger M; Rudd JA; Schönhofer E; Siegfried L
    Dalton Trans; 2012 Dec; 41(46):14157-69. PubMed ID: 23034733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What Makes Hydroxamate a Promising Anchoring Group in Dye-Sensitized Solar Cells? Insights from Theoretical Investigation.
    Li W; Rego LG; Bai FQ; Wang J; Jia R; Xie LM; Zhang HX
    J Phys Chem Lett; 2014 Nov; 5(22):3992-9. PubMed ID: 26276483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saddle-shaped porphyrins for dye-sensitized solar cells: new insight into the relationship between nonplanarity and photovoltaic properties.
    Shahroosvand H; Zakavi S; Sousaraei A; Eskandari M
    Phys Chem Chem Phys; 2015 Mar; 17(9):6347-58. PubMed ID: 25650290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: insights gained from impedance spectroscopy.
    Liu Y; Jennings JR; Zakeeruddin SM; Grätzel M; Wang Q
    J Am Chem Soc; 2013 Mar; 135(10):3939-52. PubMed ID: 23425317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.