These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 25767146)

  • 1. Hummingbird flight stability and control in freestream turbulent winds.
    Ravi S; Crall JD; McNeilly L; Gagliardi SF; Biewener AA; Combes SA
    J Exp Biol; 2015 May; 218(Pt 9):1444-52. PubMed ID: 25767146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rolling with the flow: bumblebees flying in unsteady wakes.
    Ravi S; Crall JD; Fisher A; Combes SA
    J Exp Biol; 2013 Nov; 216(Pt 22):4299-309. PubMed ID: 24031057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromuscular control of hovering wingbeat kinematics in response to distinct flight challenges in the ruby-throated hummingbird, Archilochus colubris.
    Mahalingam S; Welch KC
    J Exp Biol; 2013 Nov; 216(Pt 22):4161-71. PubMed ID: 23948477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Into turbulent air: size-dependent effects of von Kármán vortex streets on hummingbird flight kinematics and energetics.
    Ortega-Jimenez VM; Sapir N; Wolf M; Variano EA; Dudley R
    Proc Biol Sci; 2014 May; 281(1783):20140180. PubMed ID: 24671978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Into rude air: hummingbird flight performance in variable aerial environments.
    Ortega-Jimenez VM; Badger M; Wang H; Dudley R
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximal horizontal flight performance of hummingbirds: effects of body mass and molt.
    Chai P; Altshuler DL; Stephens DB; Dillon ME
    Physiol Biochem Zool; 1999; 72(2):145-55. PubMed ID: 10068617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Flight Muscle Recruitment and Wing Rotation Enables Hummingbirds to Mitigate Aerial Roll Perturbations.
    Ravi S; Noda R; Gagliardi S; Kolomenskiy D; Combes S; Liu H; Biewener AA; Konow N
    Curr Biol; 2020 Jan; 30(2):187-195.e4. PubMed ID: 31902723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Backward flight in hummingbirds employs unique kinematic adjustments and entails low metabolic cost.
    Sapir N; Dudley R
    J Exp Biol; 2012 Oct; 215(Pt 20):3603-11. PubMed ID: 23014570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional kinematics of hummingbird flight.
    Tobalske BW; Warrick DR; Clark CJ; Powers DR; Hedrick TL; Hyder GA; Biewener AA
    J Exp Biol; 2007 Jul; 210(Pt 13):2368-82. PubMed ID: 17575042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Avoiding topsy-turvy: how Anna's hummingbirds (
    Badger MA; Wang H; Dudley R
    J Exp Biol; 2019 Feb; 222(Pt 3):. PubMed ID: 30718291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hovering performance of Anna's hummingbirds (Calypte anna) in ground effect.
    Kim EJ; Wolf M; Ortega-Jimenez VM; Cheng SH; Dudley R
    J R Soc Interface; 2014 Sep; 11(98):20140505. PubMed ID: 24990291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wing flexibility improves bumblebee flight stability.
    Mistick EA; Mountcastle AM; Combes SA
    J Exp Biol; 2016 Nov; 219(Pt 21):3384-3390. PubMed ID: 27638618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bumblebees minimize control challenges by combining active and passive modes in unsteady winds.
    Ravi S; Kolomenskiy D; Engels T; Schneider K; Wang C; Sesterhenn J; Liu H
    Sci Rep; 2016 Oct; 6():35043. PubMed ID: 27752047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flight mechanics and control of escape manoeuvres in hummingbirds. I. Flight kinematics.
    Cheng B; Tobalske BW; Powers DR; Hedrick TL; Wethington SM; Chiu GT; Deng X
    J Exp Biol; 2016 Nov; 219(Pt 22):3518-3531. PubMed ID: 27595850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbulence causes kinematic and behavioural adjustments in a flapping flier.
    Lempidakis E; Ross AN; Quetting M; Krishnan K; Garde B; Wikelski M; Shepard ELC
    J R Soc Interface; 2024 Mar; 21(212):20230591. PubMed ID: 38503340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of a paradox: hummingbird flight at high elevation does not come without a cost.
    Altshuler DL; Dudley R; McGuire JA
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17731-6. PubMed ID: 15598748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient.
    Groom DJ; Toledo MC; Welch KC
    J Comp Physiol B; 2017 Jan; 187(1):165-182. PubMed ID: 27431590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.