These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25767149)

  • 21. The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores.
    Fell NLA; Lawless BM; Cox SC; Cooke ME; Eisenstein NM; Shepherd DET; Espino DM
    Osteoarthritis Cartilage; 2019 Mar; 27(3):535-543. PubMed ID: 30576795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of a single impact loading on the structure and mechanical properties of articular cartilage.
    Verteramo A; Seedhom BB
    J Biomech; 2007; 40(16):3580-9. PubMed ID: 17662988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localization of viscous behavior and shear energy dissipation in articular cartilage under dynamic shear loading.
    Buckley MR; Bonassar LJ; Cohen I
    J Biomech Eng; 2013 Mar; 135(3):31002. PubMed ID: 24231813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of lipid-extraction method on the stiffness of articular cartilage.
    Gudimetla P; Crawford R; Oloyede A
    Clin Biomech (Bristol); 2007 Oct; 22(8):924-31. PubMed ID: 17689159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of freezing on the mechanical properties of articular cartilage.
    Kennedy EA; Tordonado DS; Duma SM
    Biomed Sci Instrum; 2007; 43():342-7. PubMed ID: 17487105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue composition regulates distinct viscoelastic responses in auricular and articular cartilage.
    Nimeskern L; Utomo L; Lehtoviita I; Fessel G; Snedeker JG; van Osch GJ; Müller R; Stok KS
    J Biomech; 2016 Feb; 49(3):344-52. PubMed ID: 26772799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of loading and material on the biomechanical properties and vitality of bovine cartilage in vitro.
    Pöllänen R; Tikkanen AM; Lammi MJ; Lappalainen R
    J Appl Biomater Biomech; 2011; 9(1):47-53. PubMed ID: 21445828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frequency and diameter dependent viscoelastic properties of mitral valve chordae tendineae.
    Wilcox AG; Buchan KG; Espino DM
    J Mech Behav Biomed Mater; 2014 Feb; 30():186-95. PubMed ID: 24316874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The compressive strength of articular cartilage.
    Kerin AJ; Wisnom MR; Adams MA
    Proc Inst Mech Eng H; 1998; 212(4):273-80. PubMed ID: 9769695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional anatomy of articular cartilage under compressive loading Quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity.
    Glaser C; Putz R
    Osteoarthritis Cartilage; 2002 Feb; 10(2):83-99. PubMed ID: 11869068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of frequency on crack growth in articular cartilage.
    Sadeghi H; Lawless BM; Espino DM; Shepherd DET
    J Mech Behav Biomed Mater; 2018 Jan; 77():40-46. PubMed ID: 28888932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical characterization and in vitro mechanical injury of elderly human femoral head cartilage: comparison to adult bovine humeral head cartilage.
    Démarteau O; Pillet L; Inaebnit A; Borens O; Quinn TM
    Osteoarthritis Cartilage; 2006 Jun; 14(6):589-96. PubMed ID: 16478669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Viscoelastic properties of mitral valve leaflets: An analysis of regional variation and frequency-dependency.
    Baxter J; Buchan KG; Espino DM
    Proc Inst Mech Eng H; 2017 Oct; 231(10):938-944. PubMed ID: 28707559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frictional response of bovine articular cartilage under creep loading following proteoglycan digestion with chondroitinase ABC.
    Basalo IM; Chen FH; Hung CT; Ateshian GA
    J Biomech Eng; 2006 Feb; 128(1):131-4. PubMed ID: 16532626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading.
    Burgin LV; Edelsten L; Aspden RM
    Med Eng Phys; 2014 Feb; 36(2):226-32. PubMed ID: 24275561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of enzymatic treatments on the depth-dependent viscoelastic shear properties of articular cartilage.
    Griffin DJ; Vicari J; Buckley MR; Silverberg JL; Cohen I; Bonassar LJ
    J Orthop Res; 2014 Dec; 32(12):1652-7. PubMed ID: 25196502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants.
    Neu CP; Hull ML; Walton JH
    J Orthop Res; 2005 Nov; 23(6):1390-8. PubMed ID: 15972257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency dependent viscoelastic properties of porcine bladder.
    Barnes SC; Shepherd DE; Espino DM; Bryan RT
    J Mech Behav Biomed Mater; 2015 Feb; 42():168-76. PubMed ID: 25486629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ chondrocyte viscoelasticity.
    Han SK; Madden R; Abusara Z; Herzog W
    J Biomech; 2012 Sep; 45(14):2450-6. PubMed ID: 22884037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.